TD 9: Petri Nets

Exercise 1 (Traffic Lights). Consider again the traffic lights example from the lecture notes:

1. How can you correct this Petri net to avert unwanted behaviours (like $r \rightarrow r y \rightarrow r r$) in a 1 -safe manner?
2. Extend your Petri net to model two traffic lights handling a street intersection.

Exercise 2 (Producer/Consumer). A producer/consumer system gathers two types of processes:
producers who can make the actions produce (p) or deliver (d), and
consumers with the actions receive (r) and consume (c).
All the producers and consumers communicate through a single unordered channel.

1. Model a producer/consumer system with two producers and three consumers. How can you modify this system to enforce a maximal capacity of ten simultaneous items in the channel?
2. An inhibitor arc between a place p and a transition t makes t firable only if the current marking at p is zero. In the following example, there is such an inhibitor arc between p_{1} and t. A marking $(0,2,1)$ allows to fire t to reach $(0,1,2)$, but $(1,1,1)$ does not allow to fire t.

Using inhibitor arcs, enforce a priority for the first producer and the first consumer on the channel: the other processes can use the channel only if it is not currently used by the first producer and the first consumer.

Exercise 3 (Model Checking Petri Nets). Let us fix a Petri net $\mathcal{N}=\left\langle P, T, F, W, m_{0}\right\rangle$. We consider as usual propositional LTL, with a set of atomic propositions AP equal to P the set of places of the Petri net. We define proposition p to hold in a marking m in \mathbb{N}^{P} if $m(p)>0$.

The models of our LTL formulæ are computations $m_{0} m_{1} \cdots$ in $\left(\mathbb{N}^{P}\right)^{\omega}$ such that, for all $i \in \mathbb{N}, m_{i} \rightarrow_{\mathcal{N}} m_{i+1}$ is a transition step of the Petri net \mathcal{N}.

1. We want to prove that state-based LTL model checking can be performed in polynomial space for 1 -safe Petri nets. For this, prove that one can construct an exponential-sized Büchi automaton $\mathcal{B}_{\mathcal{N}}$ from a 1-safe Petri net that recognizes all the infinite computations of \mathcal{N} starting in m_{0}.
2. In the general case, state-based LTL model checking is undecidable. Prove it for Petri nets with at least two unbounded places, by a reduction from the halting problem for 2-counter Minsky machines.
3. We consider now a different set of atomic propositions, such that $\Sigma=2^{\mathrm{AP}}$, and a labeled Petri net, with a labeling homomorphism $\lambda: T \rightarrow \Sigma$. The models of our LTL formulæ are infinite words $a_{0} a_{1} \cdots$ in Σ^{ω} such that $m_{0} \xrightarrow{t_{0}} m_{1} \xrightarrow{t_{1}} m_{2} \cdots$ is an execution of \mathcal{N} and $\lambda\left(t_{i}\right)=a_{i}$ for all i.
Prove that action-based LTL model checking can be performed in polynomial space for labeled 1-safe Petri nets.

Exercise 4 (VASS). An n-dimensional vector addition system with states (VASS) is a tuple $\mathcal{V}=\left\langle Q, \delta, q_{0}\right\rangle$ where Q is a finite set of states, $q_{0} \in Q$ the initial state, and $\delta \subseteq Q \times \mathbb{Z}^{n} \times Q$ the transition relation. A configuration of \mathcal{V} is a pair (q, v) in $Q \times \mathbb{N}^{n}$. An execution of \mathcal{V} is a sequence of configurations $\left(q_{0}, v_{0}\right)\left(q_{1}, v_{1}\right) \cdots\left(q_{m}, v_{m}\right)$ such that $v_{0}=\overline{0}$, and for $0<i \leq m,\left(q_{i-1}, v_{i}-v_{i-1}, q_{i}\right)$ is in δ.

1. Show that any VASS can be simulated by a Petri net.
2. Show that, conversely, any Petri net can be simulated by a VASS.

Exercise 5 (VAS). An n-dimensional vector addition system (VAS) is a pair $\left\langle v_{0}, W\right\rangle$ where $v_{0} \in \mathbb{N}^{n}$ is the initial vector and $W \subseteq \mathbb{Z}^{n}$ is the set of transition vectors. An execution of $\left(v_{0}, W\right)$ is a sequence $v_{0} v_{1} \cdots v_{m}$ where $v_{i} \in \mathbb{N}$ for all $0 \leq i \leq m$ and $v_{i}-v_{i-1} \in W$ for all $0<i \leq m$.

We want to show that any n-dimensional VASS $\mathcal{V}=\left\langle Q, \delta, q_{0}\right\rangle$ can be simulated by an $(n+3)$-dimensional VAS $\left\langle v_{0}, W\right\rangle$. Let $k=|Q|$, and q_{0}, \ldots, q_{k-1} the states of \mathcal{V}. We define two functions $a(i)=i+1$ and $b(i)=(k+1)(k-i)$. We encode a configuration $\left(q_{i}, v\right)$ of \mathcal{V} as the vector $(v(1), \ldots, v(n), a(i), b(i), 0)$. For every state $q_{i}, 0 \leq i<k$, we add two transition vectors to W :

$$
\begin{aligned}
t_{i} & =(0, \ldots, 0,-a(i), a(k-1-i)-b(i), b(k-1-i)) \\
t_{i}^{\prime} & =(0, \ldots, 0, b(i),-a(k-1-i), a(i)-b(k-1-i))
\end{aligned}
$$

For every transition $d=\left(q_{i}, w, q_{j}\right)$ of \mathcal{V}, we add one transition vector to W :

$$
t_{d}=(w(1), \ldots, w(n), a(j)-b(i), b(j),-a(i))
$$

1. Show that any execution of \mathcal{V} can be simulated by $\left(v_{0}, W\right)$ for a suitable v_{0}.
2. Conversely, show that this VAS $\left(v_{0}, W\right)$ simulates \mathcal{V} faithfully.
