
MPRI 1-22 Basics of Verification December 11, 2021

TD 9: Petri Nets

Exercise 1 (Traffic Lights). Consider again the traffic lights example from the lecture
notes:

r

y

g

r → ry y → r

ry → g g → y

1. How can you correct this Petri net to avert unwanted behaviours (like r → ry → rr)
in a 1-safe manner?

2. Extend your Petri net to model two traffic lights handling a street intersection.

Exercise 2 (Producer/Consumer). A producer/consumer system gathers two types of
processes:

producers who can make the actions produce (p) or deliver (d), and

consumers with the actions receive (r) and consume (c).

All the producers and consumers communicate through a single unordered channel.

1. Model a producer/consumer system with two producers and three consumers. How
can you modify this system to enforce a maximal capacity of ten simultaneous items
in the channel?

2. An inhibitor arc between a place p and a transition t makes t firable only if the
current marking at p is zero. In the following example, there is such an inhibitor
arc between p1 and t. A marking (0, 2, 1) allows to fire t to reach (0, 1, 2), but
(1, 1, 1) does not allow to fire t.

1

MPRI 1-22 Basics of Verification December 11, 2021

p1

p2

p3

t

Using inhibitor arcs, enforce a priority for the first producer and the first consumer
on the channel: the other processes can use the channel only if it is not currently
used by the first producer and the first consumer.

Exercise 3 (Model Checking Petri Nets). Let us fix a Petri net N = 〈P, T, F,W,m0〉.
We consider as usual propositional LTL, with a set of atomic propositions AP equal to
P the set of places of the Petri net. We define proposition p to hold in a marking m in
NP if m(p) > 0.

The models of our LTL formulæ are computations m0m1 · · · in (NP)ω such that, for
all i ∈ N, mi →N mi+1 is a transition step of the Petri net N .

1. We want to prove that state-based LTL model checking can be performed in poly-
nomial space for 1-safe Petri nets. For this, prove that one can construct an
exponential-sized Büchi automaton BN from a 1-safe Petri net that recognizes all
the infinite computations of N starting in m0.

2. In the general case, state-based LTL model checking is undecidable. Prove it for
Petri nets with at least two unbounded places, by a reduction from the halting
problem for 2-counter Minsky machines.

3. We consider now a different set of atomic propositions, such that Σ = 2AP, and a
labeled Petri net, with a labeling homomorphism λ : T → Σ. The models of our

LTL formulæ are infinite words a0a1 · · · in Σω such that m0
t0−→N m1

t1−→N m2 · · ·
is an execution of N and λ(ti) = ai for all i.

Prove that action-based LTL model checking can be performed in polynomial space
for labeled 1-safe Petri nets.

Exercise 4 (VASS). An n-dimensional vector addition system with states (VASS) is
a tuple V = 〈Q, δ, q0〉 where Q is a finite set of states, q0 ∈ Q the initial state, and
δ ⊆ Q× Zn ×Q the transition relation. A configuration of V is a pair (q, v) in Q× Nn.
An execution of V is a sequence of configurations (q0, v0)(q1, v1) · · · (qm, vm) such that
v0 = 0̄, and for 0 < i ≤ m, (qi−1, vi − vi−1, qi) is in δ.

1. Show that any VASS can be simulated by a Petri net.

2

MPRI 1-22 Basics of Verification December 11, 2021

2. Show that, conversely, any Petri net can be simulated by a VASS.

Exercise 5 (VAS). An n-dimensional vector addition system (VAS) is a pair 〈v0,W 〉
where v0 ∈ Nn is the initial vector and W ⊆ Zn is the set of transition vectors. An
execution of (v0,W) is a sequence v0v1 · · · vm where vi ∈ N for all 0 ≤ i ≤ m and
vi − vi−1 ∈W for all 0 < i ≤ m.

We want to show that any n-dimensional VASS V = 〈Q, δ, q0〉 can be simulated by
an (n+ 3)-dimensional VAS 〈v0,W 〉. Let k = |Q|, and q0, . . . , qk−1 the states of V. We
define two functions a(i) = i + 1 and b(i) = (k + 1)(k − i). We encode a configuration
(qi, v) of V as the vector (v(1), . . . , v(n), a(i), b(i), 0). For every state qi, 0 ≤ i < k, we
add two transition vectors to W :

ti = (0, . . . , 0,−a(i), a(k − 1− i)− b(i), b(k − 1− i))
t′i = (0, . . . , 0, b(i),−a(k − 1− i), a(i)− b(k − 1− i))

For every transition d = (qi, w, qj) of V, we add one transition vector to W :

td = (w(1), . . . , w(n), a(j)− b(i), b(j),−a(i))

1. Show that any execution of V can be simulated by (v0,W) for a suitable v0.

2. Conversely, show that this VAS (v0,W) simulates V faithfully.

3

