TD 7

Exercise 1. Given $p \in AP$, we are only interested in runs visiting finitely often states satisfying p. Hence, we define path quantifiers E_p and A_p as

$$\mathsf{E}_p \, \varphi = \mathsf{E}(\mathsf{FG} \neg p \land \varphi)$$
$$\mathsf{A}_p \, \varphi = \mathsf{A}((\mathsf{FG} \neg p) \Rightarrow \varphi)$$

We consider $\operatorname{CTL}_p(\operatorname{AP},\mathsf{X},\mathsf{U})$ defined by the syntax

$$\varphi ::= \top |q \in \operatorname{AP} | \neg \varphi | \varphi \lor \varphi | \mathsf{E}_p \mathsf{X} \varphi | \mathsf{E}_p \varphi \mathsf{U} \varphi | \mathsf{E}_p \mathsf{G} \varphi$$

where $q \in AP$.

- 1. Show that we can add $A_p X \varphi$ and $A_p \varphi \cup \varphi$ to the syntax without changing the expressive power of $CTL_p(AP, X, U)$.
- 2. Prove that $CTL_p(AP, X, U)$ formulæ can be expressed in CTL(AP, X, U).
- 3. Prove that CTL(AP, X, U) is strictly more expressive than $CTL_p(AP, X, U)$.

Exercise 2. Given a family of sets of states $(F_i)_{1 \le i \le n}$, we define fair runs as runs that visit infinitely often each F_i . Formally, σ is fair if $\sigma \models \bigwedge_{1 \le i \le n} \mathsf{GF} F_i$ where $s \models F_i$ iff $s \in F_i$. We define path quantifiers E_f and A_f as

$$E_f(\varphi) = \mathsf{E}(\varphi \land \bigwedge_{1 \le i \le n} \mathsf{GF} F_i)$$
$$A_f(\varphi) = \mathsf{A}((\bigwedge_{1 \le i \le n} \mathsf{GF} F_i) \Rightarrow \varphi)$$

We consider $\operatorname{CTL}_{f}(\operatorname{AP}, \mathsf{X}, \mathsf{U})$ defined by the syntax

$$\varphi ::= \top | p \in \operatorname{AP} | \neg \varphi | \varphi \lor \varphi | \mathsf{E}_f \mathsf{X} \varphi | \mathsf{E}_f \varphi \mathsf{U} \varphi | \mathsf{A}_f \varphi \mathsf{U} \varphi$$

Show that $CTL_f(AP, X, U)$ cannot be expressed in CTL.

Exercise 3. We consider the logic CTL-Sync defined by the following syntax:

$$\varphi ::= \top | p \in \operatorname{AP} | \neg \varphi | \varphi \lor \varphi | \mathsf{EX} \varphi | \mathsf{E} \varphi \mathsf{U} \varphi | \mathsf{AX} \varphi | \mathsf{A} \varphi \mathsf{U} \varphi | \varphi | \varphi \mathsf{UE} \varphi | \varphi \mathsf{UA} \varphi$$

where:

- $s \models \varphi_1 \cup \mathsf{E} \varphi_2$ if there exists $k \ge 0$ such that for all $j, 0 \le j < k$ there exists a path $s_0 s_1 \dots s_k$ with $s_0 = s$ such that $s_j \models \varphi_1$ and $s_k \models \varphi_2$
- $s \models \varphi_1 \cup A \varphi_2$ if there exists $k \ge 0$ such that for all $j, 0 \le j < k$ and for all paths $s_0 s_1 \dots s_k$ with $s_0 = s$ we have $s_j \models \varphi_1$ and $s_k \models \varphi_2$

- 1. For each pair of formula, decide whether they are equivalent (in finite structures)
 - $\mathsf{FE} p$ and $\mathsf{EF} p$
 - $\mathsf{FA}\,p$ and $\mathsf{AF}\,p$
 - $\mathsf{GE}\,p$ and $\mathsf{EG}\,p$
 - $\mathsf{GE}\,\mathsf{EF}\,p$ and $\mathsf{EG}\,\mathsf{EF}\,p$
- 2. Show that CTL-Sync is strictly more expressive than CTL.