

Figure 1: A Kripke structure.

TD 6: Partial-Order Reduction Solutions

Exercise 1

- 1. $I = \{(a, b), (a, d), (b, c), (b, d), (c, d)\}$ closed by symmetry. Only $(a, c) \notin I$ due to states s_1 and s_6 . $U = \{a, c\}$.
- 2. $red(s_0) = en(s_0) = \{b, d\}$ and $red(s_7) = en(s_7) = \{b, d\}$ (there is no invisible action from either s_0 or s_7).
 - $red(s_3) = en(s_3) = \{b\}$ and $red(s_4) = en(s_4) = \{b\}$ to satisfy (C0).
 - Because a and c depend on each other, $red(s_1) = en(s_1) = \{a, c\}$ and $red(s_6) = en(s_6) = \{a, c\}$.
 - Finally, $red(s_2) = en(s_2) = \{a, c, d\}$ and $red(s_5) = en(s_5) = \{a, c, d\}$ because we can't remove a or c and keep the other withouth breaking condition (C1), can't remove both because d is not invisible and can't remove anything if we keep c because it creates a cycle with only s_2 (resp. s_5).

Exercise 2

- 1. Suppose we have some function red satisfying (C1). Consider a state s and suppose there exists a in red(s) and b in $en(s) \setminus red(s)$ such that a and b are not independent from each other. Then there exists t such that $s \xrightarrow{b} t$ in \mathcal{K} and the path $s \xrightarrow{b} t$ violates (C1): this is a contradiction.
- 2. Consider the Kripke structure described in Figure 1, with red(s) = en(s) for $s \neq s_0$ and $red(s_0) = \{a\}$. This satisfies (C0),(C1'),(C2),(C3) because a and b are independent from each other and a is invisible. One is able to differentiate between the original Kripke structure and its reduction thanks to a formula such as $\neg p \cup (p \cup \neg p)$, which is satisfied by the run $s_0 \rightarrow s_2 \rightarrow s_1 \rightarrow s_3$.

Exercise 3

- 1. (C0), (C2) and (C3) are trivially satisfied. (C1) is satisfied as well because a and b on one side, a and c on the other side are independent from each other.
- 2. $\mathsf{E}(\top \mathsf{U}(\mathsf{E}(p \mathsf{U} q) \land \mathsf{E}(p \mathsf{U}(\neg p \land \neg q))))$ cannot be satisfied if s_7 cannot be reached.
- 3. $red(s_0) = a$, and for $s \neq s_0$ red(s) = en(s) works.

Exercise 4

In the Kripke structure defined above, the assignments $red(s_0) = \{a\}$, $red(s_1) = \{b\}$, $red(s_2) = \{a\}$ and $red(s_3) = b$ satisfy (C0)-(C2) but results in a Kripke structure where states s_2 and s_3 are unattainable.