TD 4 Solutions

Exercise 1

We construct the new automaton in the following way: we create n + 1 "copies" of the automaton, having the same states and transitions for all non-accepting states. We number them from 0 to n. In copy number k, we call s_k the state corresponding to $s \in Q$ in the original automaton. The set of initial states of the new automaton is the set $\{s_0 | s \in I\}$. Given a transition $s \to s'$ in the original automaton where $s \notin F_i$ for any i we create transitions $s_k \to s'_k$ in all copies. Given a transition $s \to s'$ in the original automaton where $s \in F_i$ for some i, we create transitions $s_k \to s'_k$ for $k \neq i$ and a transition $s_i \to s'_{i+1}$ if $i \neq n$, $s_i \to s'_0$ else. Finally, the set of final states in the new automaton is the set $\{s_n | s \in F_n\}$.

The idea is that an execution in the new automaton goes from copy i to copy i + 1 when a state from F_i is visited, hence it can visit the set of final states inifinitely many times if and only if the corresponding execution in the original automaton visits each F_i infinitely often.

Exercise 2

We first show that $\operatorname{Rec}(\Sigma^{\omega}) \subseteq \operatorname{Rat}(\Sigma^{\omega})$. Let $\mathcal{A} = (Q, \Sigma, I, T, F)$ be a Büchi automaton recognizing some rational language L. For each $i \in I$, and $f \in F$, let $X_{i,f}$ be the language recognized by the finite-word automaton $(Q, \Sigma, \{i\}, T, \{f\})$ and Y_f the language recognized by the finite-word automaton $(Q, \Sigma, \{f\}, T, \{f\})$. We then have $L = \bigcup_{(i,f)\in I\times F} X_{i,f} Y_f^{\omega}$ (the idea is that an accepting execution in \mathcal{A} ends looping infinitely from some final state to itself).

To show that $\operatorname{Rat}(\Sigma^{\omega}) \subseteq \operatorname{Rec}(\Sigma^{\omega})$, let us consider a rational language $L = \bigcup_{0 \leq i < n} X_i Y_i^{\omega}$. Consider finite-words automata \mathcal{X}_i and \mathcal{Y}_i that recognize X_i and Y_i respectively. To construct a Büchi automaton recognizing L, we only need to connect final states in \mathcal{X}_i to initial states in \mathcal{Y}_i , and final states in \mathcal{Y}_i to initial states in \mathcal{Y}_i for all i. The final states of our new automaton are final states in \mathcal{Y}_i for some i.

Exercise 3

- 1. The two automata are described in Figure 1 and Figure 2 respectively.
- 2. Suppose there exists some deterministic automaton \mathcal{A} for L. Let i be its initial state, F its set of final states, and for any state s of \mathcal{A} and any word $w \in (a+b)^*$ let $\delta(s, w)$ be the state we end up in when reading w from s (notice this is always well-defined because with the help of a bin-state we can make the automaton complete). Since $a^{\omega} \in L$ there exists some $n_0 \in \mathbb{N}$ such that $\delta(i, a^{n_0}) \in F$. Similarly, since $a^{n_0}ba^{\omega} \in L$ there exists some n_1 such that $\delta(i, a^{n_0}ba^{n_1}) \in F$. By repeating this ad

Figure 1: A nondeterministic Büchi automaton for $(a + b)^* a^{\omega}$.

Figure 2: A deterministic Büchi automaton for $(a^*b)^{\omega}$.

infinitum, we construct a sequence of natural numbers $(n_k)_{k \in \mathbb{N}}$ such that the word $a^{n_0}ba^{n_1}ba^{n_2}b...$, which does not belong to L, is accepted by \mathcal{A} .

3. We have $L' = \overrightarrow{L}$.

Exercise 4

- 1. Each congruence class is associated with a unique function $Q^2 \to \{0, 1, 2\}$ mapping pairs of states (q, q') to 2 if and only if all words u in the congruence class satisfy $q \stackrel{u}{\to}_F q'$, 1 if and only if all words u in the congruence class satisfy $q \stackrel{u}{\to} q'$ but not $q \stackrel{u}{\to}_F q'$ and 0 if no word u in the class satisfies $q \stackrel{u}{\to} q'$. Two different congruence classes cannot be associated to the same function: this would mean the words in the two classes are equivalent to each other, and thus the two congruence classes are actually one and the same. Q being finite, there is a finite number of functions $Q^2 \to \{0, 1\}$ and hence \mathcal{A} has a finite number of congruence classes.
- 2. For any pair of states (q, q'), we define by $\mathcal{L}(q, q')$ the language $\{u \in \Sigma^* | q \xrightarrow{u} q'\}$ and $\mathcal{L}_F(q, q')$ the language $\{u \in \Sigma^* | q \xrightarrow{u}_F q'\}$. Each of these languages is regular: $\mathcal{L}(q, q')$ is quite obviously recognized by the automaton $(Q, \Sigma, \{q\}, T, \{q'\})$ and $\mathcal{L}(q, q')$ is recognized by a slightly more complicated automaton built from two copies of \mathcal{A} , with transitions from one copy to another from states in F, q as the only initial state and the copy of q' as the only accepting one. Each congruence class can be expressed as a finite intersection of languages of the form $\mathcal{L}_F(q, q')$, $\mathcal{L}(q, q')$ or the complement of one or the other. More precisely, for $u \in \Sigma^*$:

$$[u] = \bigcap_{u \in \mathcal{L}_F(q,q')} \mathcal{L}_F(q,q') \cap \bigcap_{\substack{u \in \mathcal{L}(q,q')\\ u \notin \mathcal{L}_F(q,q')}} \mathcal{L}(q,q') \cap \overline{\mathcal{L}_F(q,q')} \cap \bigcap_{u \notin \mathcal{L}(q,q')} \overline{\mathcal{L}(q,q')}$$

Hence, as a finite intersection of regular languages, each congruence class is itself a regular language.

- 3. As seen in exercise 2, since each congruence class is a regular language, each $[u][v]^{\omega}$ is a recongizable language. Since there are finitely many congruence classes, K(L) is thus a finite union of recognizable languages, which means it is itself a recognizable language.
- 4. Consider some word $w \in K(L(\mathcal{A}))$. By design there exist words $u, v_0, v_1 \ldots \in \Sigma^*$ such that $w = uv_0v_1 \ldots$ and there exists v such that for all $i \ v_i \in [v]$ and $[u][v]^{\omega} \cap L(\mathcal{A}) \neq \emptyset$. This means there exist words u' and $v'_0, v'_1 \ldots$ such that $u \sim_{\mathcal{A}} u'$, for all $i \ v_i \sim_{\mathcal{A}} v'_i$ and $u'v'_0v'_1 \ldots \in \mathcal{A}$. Consider an accepting execution $q_0q_1q_2\ldots$ of $u'v'_0v'_1\ldots$ in \mathcal{A} . In particular there exist k_0, k_1, \ldots such that $q_0 \xrightarrow{u'} q_{k_0}$, $q_{k_0} \xrightarrow{v'_0} q_{k_1}$ etc. Since this execution is accepting there exists $k_{i_0}, k_{i_1}\ldots$ such that $q_{k_{i_0}} \xrightarrow{v'_{i_0-1}}_{F} q_{k_{i_0}+1}, q_{k_{i_1}} \xrightarrow{v'_{i_1-1}}_{F} q_{k_{i_1}+1}\ldots$ Since $u \sim_{\mathcal{A}} u'$ and for all $i \ v_i \sim_{\mathcal{A}} v'_i$ we also have $q_0 \xrightarrow{u} q_{k_0}, q_{k_0} \xrightarrow{v_0} q_{k_1}$ etc., and for all $n \ q_{k_{i_n}} \xrightarrow{v_{i_n-1}} q_{k_{i_n}+1}$, hence there exists an accepting execution of $uv_0v_1\ldots$ in \mathcal{A} , which means $w \in L(\mathcal{A})$.
- 5. For all i, j with i < j, let c(i, j) be the congurence class of $\sigma_i \dots \sigma_{j-1}$. As there is a finite number of congruence classes, we can apply Ramsey's theorem: there exists an infinite set $A \subseteq \mathbb{N}$ and a congruence class [v] such that for all $i, j \in A^2$ with i < j we have c(i, j) = [v]. Let us order the elements in A: $A = \{i_n | n \in \mathbb{N}\}$ with for all $n \ i_n < i_{n+1}$. We then have that for all $n \ \sigma_{i_n} \dots \sigma_{i_{n+1}-1} \in [v]$. This means that $\sigma \in [\sigma_{< i_0}][v]^{\omega}$.
- 6. Using the previous question, we show that $\overline{L(A)} \subseteq K(\overline{L(A)})$, and thus $\overline{L(A)} = K(\overline{L(A)})$. Since $K(\overline{L(A)})$ is recognizable, this means $\overline{L(A)}$ is recognizable.