TD 4: Büchi Automata and LTL Model-Checking

Exercise 1 (Generalized Acceptance Condition). A generalized Büchi automaton $\mathcal{A} = (Q, \Sigma, I, T, (F_i)_{0 \le i < n})$ has a finite set of accepting sets F_i . An infinite run σ of \mathcal{A} satisfies this generalized acceptance condition if each set F_i is visited infinitely often.

Show that for any generalized Büchi automaton, one can construct an equivalent Büchi automaton.

Exercise 2 (Rational Languages). A rational language L of infinite words over Σ is a finite union

$$L = \bigcup X \cdot Y^{\omega}$$

where X is in $\mathsf{Rat}(\Sigma^*)$ and Y in $\mathsf{Rat}(\Sigma^+)$. We denote the set of *rational* languages of infinite words by $\mathsf{Rat}(\Sigma^{\omega})$.

Show that $\operatorname{Rec}(\Sigma^{\omega}) = \operatorname{Rat}(\Sigma^{\omega})$.

Exercise 3 (Deterministic Büchi Automata). A Büchi automaton is *deterministic* if $|I| \leq 1$, and for each state q in Q and symbol a in Σ , $|\{(q, a, q') \in T \mid q' \in Q\}| \leq 1$.

- 1. Give a nondeterministic Büchi automaton for the language $L \subseteq \{a, b\}^{\omega}$ described by the expression $(a + b)^* a^{\omega}$, and a deterministic Büchi automaton for \overline{L} .
- 2. Show that there does not exist any deterministic Büchi automaton for L.
- 3. Let $\mathcal{A} = (Q, \Sigma, T, q_0, F)$ be a finite deterministic automaton that recognizes the language of finite words $L \subseteq \Sigma^*$. We can also interpret \mathcal{A} as a deterministic Büchi automaton with a language $L' \subseteq \Sigma^{\omega}$; our goal here is to relate the languages of finite and infinite words defined by \mathcal{A} .

Let the *limit* of a language $L \subseteq \Sigma^*$ be

 $\overrightarrow{L} = \{ w \in \Sigma^{\omega} \mid w \text{ has infinitely many prefixes in } L \} .$

Characterize the language L' of infinite words of \mathcal{A} in terms of its language of finite words L and of the limit operation.

Exercise 4 (Closure by Complementation). The purpose of this exercise is to prove that $\operatorname{Rec}(\Sigma^{\omega})$ is closed under complement. We consider for this a Büchi automaton $\mathcal{A} = (Q, \Sigma, T, I, F)$, and want to prove that its complement language $\overline{L(\mathcal{A})}$ is in $\operatorname{Rec}(\Sigma^{\omega})$.

We write $q \xrightarrow{u} q'$ for q, q' in Q and $u = a_1 \cdots a_n$ in Σ^* if there exists a sequence of states q_0, \ldots, q_n such that $q_0 = q$, $q_n = q'$ and for all $0 \le i < n$, (q_i, a_{i+1}, q_{i+1}) is in T.

We write in the same way $q \xrightarrow{u}_{F} q'$ if furthermore at least one of the states q_0, \ldots, q_n belongs to F.

We define the *congruence* $\sim_{\mathcal{A}}$ over Σ^* by

$$u \sim_{\mathcal{A}} v \text{ iff } \forall q, q' \in Q, \ (q \xrightarrow{u} q' \Leftrightarrow q \xrightarrow{v} q') \text{ and } (q \xrightarrow{u}_{F} q' \Leftrightarrow q \xrightarrow{v}_{F} q')$$

- 1. Show that $\sim_{\mathcal{A}}$ has finitely many congruence classes [u], for u in Σ^* .
- 2. Show that each [u] for u in Σ^* is in $\operatorname{Rec}(\Sigma^*)$, i.e. is a regular language of finite words.
- 3. Consider the language K(L) for $L \subseteq \Sigma^{\omega}$

$$K(L) = \bigcup_{\substack{u,v \in \Sigma^* \\ [u][v]^{\omega} \cap L \neq \emptyset}} [u][v]^{\omega}$$

Show that K(L) is in $\operatorname{Rec}(\Sigma^{\omega})$ for any $L \subseteq \Sigma^{\omega}$.

- 4. Show that $K(L(\mathcal{A})) \subseteq L(\mathcal{A})$ and $K(\overline{L(\mathcal{A})}) \subseteq \overline{L(\mathcal{A})}$.
- 5. Prove that for any infinite word σ in Σ^{ω} there exist u and v in Σ^* such that σ belongs to $[u][v]^{\omega}$. The following theorem might come in handy when applied to couples of positions (i, j) inside σ :

Theorem 1 (Ramsey, infinite version). Let $E = \{(i, j) \in \mathbb{N}^2 \mid i < j\}$, and $c : E \to \{1, \ldots, k\}$ a k-coloring of E. There exists an infinite set $A \subseteq \mathbb{N}$ and a color $i \in \{1, \ldots, k\}$ such that for all $(n, m) \in A^2$ with n < m, c(n, m) = i.

6. Conclude.