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TD 1: Models

Exercise 1 (Rendez-vous with Data). Consider the synchronization of transition sys-
tems with variables through a rendez-vous mechanism. Such a system is of form M =
(S,Σ,V, (Dv)v∈V , T, I,AP, l) where V the set of (typed) variables v, each with domain
Dv.

We want to extend the rendez-vous mechanism between systems with variables with
the ability to exchange data values. For instance, a system Mi may transmit a value m
by performing

si
!m−→ s′i ,

only if some system Mj is ready to receive the message, i.e. to perform

sj
?v−→ s′j ,

where v is a variable of Mj and m is in Dv. Of course the synchronization is also possible
if Mj performs instead

sj
?m−−→ s′j .

1. Propose Structural Operational Semantics for the rendez-vous with data synchro-
nization.

2. Assume Dv = D for all variables v in V.

Generalize these semantics to allow sending and receiving terms in T (Σ,V) built
from the variables and a finite set of symbols Σ that contains D.

Exercise 2 (Needham-Schroeder Protocol). We consider the analysis of a public-key
authentication protocol proposed by Needham and Schroeder in 1978. The protocol
relies on

• the generation of nonces NC : random numbers that should only be used in a single
session, and

• on public key encryption: we denote the encryption of message M using C’s public
key by 〈M〉C .

A(lice) and B(ob) try to make sure of each other’s identity by the following (very sim-
plified) exchange:
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A B

1.〈A,NA〉B

2.〈NA, NB〉A

3.〈NB 〉B

1. Alice first presents herself (the A part of the message) and challenges Bob with
her nonce NA. Assuming both cryptography and random number generation to
be perfect, only Bob can decrypt 〈A,NA〉B and find the correct number NA.

2. Bob responds by proving his identity (the NA part) and challenges Alice with his
own nonce NB.

3. Finally, Alice proves her identity by sending NB.

The nonces NA and NB are used by Alice and Bob as secret keys for their communica-
tions.

In order to account for the insecure channel, we have to add an intruder I to the
model, who has his own nonce NI , and can read and send any message it fancies, but
can only decrypt 〈M〉I messages and cannot guess the nonces generated by Alice and
Bob.

We can model the behaviour of Alice as a transition system MA with variables and
rendez-vous with data, using a single variable N ranging over DN = {NA, NB, NI}.

0N := NA

1B

1I

2B

2I

3B

3I

!1.〈A,NA〉B

!1.〈A,NA〉I

?2.〈NA, N〉A

?2.〈NA, N〉A

!3.〈N〉B

!3.〈N〉I

1. Provide a model MB for Bob.

2. Provide a model MI for the intruder.

3. Unfold an execution path in the synchronized product of MA, MB, and MI that
unveils a flaw in the protocol.
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Exercise 3 (Channel Systems). The course notes present the semantics of FIFO chan-
nels. We consider here the case of a single finite system M = 〈S,Σ, T, I,AP, `〉 along
with n unbounded channels over a finite set Γ (i.e. each channel is declared as ci:
channel[∞] of Γ for each 1 ≤ i ≤ n). Configurations of the full system M̂ are thus in
S × (Γ∗)n, i.e. of form (s, γ1, . . . , γn) where s is a state of S and channel i contains γi.
Without loss of generality, we consider the channels to be empty in the initial configu-
rations, i.e. Î = {(si, ε, . . . , ε) | si ∈ I}.

We are interested in the control-state reachability problem, i.e. given an n-channel
system M̂ and a state s, does there exist an initial state si in I and n strings γ1, . . . , γn
in Γ∗ s.t. (si, ε, . . . , ε)→∗ (s, γ1, . . . , γn)?

1. Consider the case Γ = {a} and n = 1. Show that the control-state reachability
problem is decidable in PTime.

2. Show that it becomes undecidable for n = 1 and |Γ| ≥ 2.

3. We allow the channel systems to test the contents of a channel for emptiness:

ν(cj) = ε ∧ si
empty(cj)−−−−−−→ s′i

(s̄, ν)
empty(cj)−−−−−−→ (s̄′, ν)

Show that the control-state reachability problem is then undecidable for n ≥ 2
even if |Γ| = 1.
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