Homework 5

To hand in on October 26 (Wednesday) in my office or by email at leroux@lsv.fr. Answers can be written in french or in english.

Exercise 1. Let $AP = \{p, q\}$, and $\Sigma = 2^{AP} = \{a, b, c, d\}$, where $a = \{p\}$, $b = \{q\}$, $c = \{p, q\}$, and $d = \emptyset$. We identify each letter in Σ with a boolean formula over AP, for instance, $a = p \land \neg q$.

For each LTL formula φ below, give a Büchi automaton accepting the language $L(\varphi) = \{ w \in \Sigma^{\omega} \mid w, 0 \models \varphi \}.$

- 1. $(\mathsf{GF} a) \to (\mathsf{GF} b)$
- 2. $G(a \rightarrow (\neg a SU b))$
- 3. $G(X b \rightarrow a)$
- 4. $(\mathsf{GF} a) \land (\mathsf{F} b) \land (\mathsf{F} c)$

Exercise 2. A Büchi automaton $\mathcal{A} = (Q, \Sigma, I, T, F)$ is *deterministic* if $|I| \leq 1$, and for each state q in Q and symbol a in Σ , $|\{(q, a, q') \in T \mid q' \in Q\}| \leq 1$.

- 1. Show that the set of languages recognizable by Büchi automata, and the set of languages recognizable by *deterministic* Büchi automata, are closed under intersection.
- 2. Show that the set of languages recognizable by Büchi automata, and the set of languages recognizable by *deterministic* Büchi automata, are closed under union.