Homework 1

To hand in on September 30th at the beginning of the exercise session, or by email to leroux@lsv.fr.

Exercise 1 (Mutual Exclusion).

1. The following program is a mutual exclusion protocol for two processes. There is a shared boolean variable \(s \), initialized to 1, and two shared boolean variables \(y_i \), \(i \in \{0, 1\} \), initialized to 0. Each process \(P_i \) can read the values of \(s \), \(y_0 \), and \(y_1 \), but only write a new value in \(s \) and \(y_i \). Here is the code of process \(P_i \) in C-like syntax:

```c
while (true)
{
    /* 1: Noncritical section. */
    atomic { y_i = 1; s = i; };
    /* 2: Wait for turn. */
    wait until ((y_{1-i} == 0) || (s != i));
    /* 3: Critical section. */
    y_i = 0;
}
```

Draw the transition system of each process, and construct their parallel composition. Label the states appropriately using the atomic propositions \(w_i \) and \(c_i \), holding when process \(P_i \) is waiting or in the critical section, respectively.

2. Does the algorithm ensure mutual exclusion, i.e. that the two processes can never be simultaneously inside the critical section?

3. Does the algorithm ensure starvation freedom, i.e. that every waiting process will eventually access the critical section, provided that the other process does not stay forever inside the critical section?