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General context Parameterized complexity provides a refined analysis of the inherent diffi-
culty of computational problems. This is done by introducing parameters of the input in the
measure of the algorithms’ complexity.

Studied problem We consider the class XNLP of parameterized problems that can be solved
by a nondeterministic algorithm with both time bounded by f(k)nc and space bounded by
f(k) log(n), for f a computable function, k the parameter, n the input size, and c a constant.
XNLP-hardness is conjectured to imply that there is no algorithm running in time nf(k) and
space f(k)nc. We seek to find more XNLP-complete problems and better understand the
boundaries of XNLP.

Contribution We provide XNLP-complete problems parameterized by several ‘linear width
measures’ of the input graph. This allows for dense graph instances, unlike the previously
established XNLP-complete problems.

The computational model of XNLP seems to enforce a linear structure, hence we extend
the results of XNLP to treelike structures. This is done by defining the class XALP via
Alternating Turing Machines (or equivalently Nondeterministic Turing Machines equipped
with a stack).

Perspectives The relationship of XALP to existing parameterized hierarchies, and the com-
pleteness of some tiling problems remain to be explored.

Hardness results of problems parameterized by treedepth would be interesting although
completeness seems unlikely.
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1. Introduction

The principal interest of parameterized complexity is to provide an understanding of what
makes a problem instance tractable or intractable. The point of parameterized complexity
is to add a number (or several) to problem instances, called the parameter, which proves to
be relevant to the tractability of the instance. The parameter is used in the analysis of the
running time and the space requirements. The parameter could be the size of the sought
solution, a hint to the structure of the instance, the number of a particular set of elements
that constitute the instance, etc. This is a very natural thing to do when designing and
analysing algorithms, but it also turned out to be very fruitful from a complexity point of
view. The theoretical aspects of parameterized complexity were introduced by Downey and
Fellows in the early 90s.

The concept of NP-hardness undoubtedly provides some insight on whether a problem is
hard or not. However, an NP-hard problem may contain relatively few hard instances, with
most instances being very easy to solve. As an example of this, you can consider Hamiltonian
Cycle, the problem of deciding if a graph has a cycle covering each vertex exactly once. It
is not difficult to see that if the instance is not a connected graph (and even if it is not
a 2-connected graph), a property that can be checked in linear time, we know that it is a
NO-instance. Intuitively, most dense graphs should also be YES-instances (several criteria
have been found for the identification of simple instances). This already motivates finding
distinctions between instances of NP-hard problems.

While NP-complete problems are reducible to each other in polynomial time, some NP-
complete problems are definitely easier than others. Outside of the parameterized complexity
world, this is visible with moderately exponential algorithms. Consider the following two
NP-complete problems: Hamiltonian Cycle and Vertex Cover, the problem of finding
in a given graph a set of vertices that hits all edges. There is no known algorithm running
faster than the classical O∗(2n)1 [HK62] for the former, while the latter admits algorithms
running in O∗(1.221n) [FGK09]. Note that the technique Measure & Conquer that lead to
this result, defines some notion of measure of the hardness of a subproblem in order to obtain
this improved bound on the running time.

We conclude this list of motivations for parameterized complexity by introducing the no-
tion of kernel. Although the usual way of quantifying hardness of an instance in classical
complexity is to consider its size, it is easy to see that you can often make instances that
are arbitrarily larger without being harder. A kernel is a “reduced” instance of size bounded
by the initial parameter, obtained from an initial instance by applying reduction rules to
reduce the instance size. We say that a problem admits a kernel if there is a polynomial time
algorithm producing a kernel for any instance of the problem. While admitting a kernel is an
interesting notion and turns out to be equivalent to admitting an FPT algorithm (the notion
will be introduced later), the question of admitting a polynomial kernel (i.e. the size of the
kernel is bounded by a polynomial of the parameter) raises more interest. It is especially
interesting to note that there are ways to prove that a problem does not admit a polynomial
kernel, unless a common assumption of classical complexity is disproved.

The most important classes of parameterized complexity are FPT and XP. FPT stands for
Fixed Parameter tractable. FPT is the class of problems that can be solved in time f(k)·nO(1),

1The notation O∗ hides the polynomial factors.
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where n is the instance size, k the parameter, and f a (computable) function. Ideally, we
want f to grow as slowly as possible, and having a small polynomial term is also desirable.
Note however that, if the problem is not in P, f cannot be polynomial for usual parameters.
Furthermore, if the problem is NP-hard, f is expected to be at least exponential. In a general
setting, there is no reason to be able to optimise both f and the polynomial term. Most works
focus on optimising only one of them. XP is the class of problems that can be solved in time
f(k) ·ng(k), where n is the instance size, k the parameter, and f, g computable functions. XP
is the class of problems that are in P for each fixed value of the parameter, and can be called
slice-wise polynomial. It should be clear that FPT is contained in XP. In that sense, finding
an FPT algorithm instead of an XP algorithm may be considered as an equivalent to finding
a polynomial time algorithm in classical complexity. Once again, there are some techniques
to show negative results: W[1]-hard problems are believed not to be in FPT (the class W[1]
will be introduced in the following section), and problems that are NP-hard for a constant
value of the parameter cannot be in XP unless P=NP (the class of such problems is called
para-NP).

By making assumptions on the optimal running time of algorithms for SAT, it is possible
to prove tight lower bounds on the parameterized complexity of some problems. This line of
work is called fine-grained parameterized complexity.

For a more detailed introduction to parameterized complexity and parameterized algo-
rithms, consider the textbooks [CFK+15, DF13, FG06].

While complexity classes with simultaneous bounds on the time and space requirements
have been studied in the classical setting, this is relatively new to the landscape of parameter-
ized complexity. The goal of the project is to make progress in this direction with the study
of the class XNLP, which corresponds to problems that can be solved nondeterministically in
FPT time, i.e. f(k) ·nO(1), and g(k) log n space, where n is the instance size, k the parameter,
and f, g are computable functions. This class has natural ties to dynamic programming on
linear decompositions. XNLP-hard problems are not expected to be solvable faster than in
XP time while using XP space.

Since many combinatorial problems can be expressed in terms of graphs (or generalizations),
it is quite natural to ask for structures which make problems tractable on graphs. Finding a
decomposition of a graph is a way of making the structure explicit. Designing algorithms on
graph decompositions shows how to make use of the given structure to solve problems. One of
the most successful notions of graph decomposition to date is the tree decomposition. It has
applications in the study of graph minors, and has been widely studied regarding algorithmic
applications. In particular, a theorem of Bruno Courcelle shows that any problem expressible
in Monadic Second Order logic is solvable in FPT time when parameterized by the width of
a given a tree decomposition. It turns out that computing such a decomposition can also be
done in FPT time, so the assumption that the decomposition is given is not needed.

The design of efficient parameterized algorithms on graph decompositions is an active area
of research and XNLP appears to be a relevant tool in this area. It can often be used to show
stronger hardness results than what is currently known without too much effort. Current
hardness results are usually centered on running time (e.g. W[1]-hardness, NP-hardness), for
which XNLP-hardness does not give more information. However, it gives information on the
space required for efficient algorithms. While this might seem less important, this is very
important when implementing algorithms. You may consider having your algorithm run for 1
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hour instead of a 1 second when solving large instances, but if it now also requires thousands
of gigabytes of RAM instead of 1 gigabyte, it will be hard to find a computer with such
specifications.

2. Preliminaries

2.1. Graph theory terminology

We use standard notations but introduce them for convenience. We mostly consider simple
graphs, i.e. undirected and loopless graphs. Formally, a graph is an ordered pair (V,E) where
V is the set of vertices and E is the set of edges which are unordered pairs of vertices called
endpoints of the edge. We use notation V (G) and E(G) for a graph G to denote its set of
vertices or edges respectively. In the case of multigraphs, E becomes a multiset.

The neighborhood of a vertex v in graph G = (V,E) is denoted by NG(v) and corresponds
to the set {w ∈ V \ {v} | vw ∈ E}. This is extended to subsets of vertices as follows. For
U ⊆ V , NG(U) =

(⋃
v∈U NG(v)

)
\ U . The closed neighborhoods are denoted by NG[v] and

NG[U ], and defined by NG[v] = {v} ∪ NG(v) and NG[U ] = U ∪ NG(U). The degree of v is
the cardinality of its neighborhood. When the considered graph is clear from context, the
subscript is dropped.

A graph H = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V , E′ ⊆ E, and edges of E′

contain only vertices of V ′. The subgraph of G = (V,E) induced by the subset of vertices
U ⊆ V is the subgraph (U,E′) where E′ contains all edges of E with both endpoints in U , it
is denoted G[U ]. The subgraph G − A denotes (V,E \ A). We let G − v and G − U denote
G[V \{v}] and G[V \U ] respectively. Given X,Y disjoint subsets of V , we denote by G[X,Y ],
the bipartite subgraph induced by (X,Y ), i.e. the subgraph on vertex set X ∪ Y , with only
edges of G incident to X and Y remaining. We use E(X,Y ) = E(G[X,Y ]) as a shorthand
when G is clear from context.

A minor H of G is a graph obtained from a subgraph of G by contracting edges (i.e. merging
two vertices that were incident to the same edge and removing this edge). A topological minor
H of G is a graph obtained from a subgraph of G by smoothing vertices of degree 2 (i.e.
removing such vertices while adding an edge between their neighbors). An immersion H of
G is a graph such that there is an injective mapping of vertices of H to vertices of G where
the images of vertices adjacent in H are connected by edge-disjoint paths.

A cutvertex is a vertex whose removal increases the number of connected components. A
2-connected component of G is a maximal subset C of vertices such that G[C]−v is connected
for all v ∈ C. The maximum degree of a graph G is often denoted ∆(G). The complete graph
on n vertices is Kn, and the complete bipartite graph with n and m vertices on each side is
Kn,m.

2.2. Parameterized complexity

Definition 1. A parameterized problem is a language L ⊆ Σ∗ × N, where Σ is a fixed finite
alphabet. For an instance (x, k) ∈ Σ∗×N, k is called the parameter. The size of the instance
is |x|+ k, as if the parameter was written in unary.
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Definition 2. A parameterized problem L is called fixed-parameter tractable (FPT) if there
exists an algorithm A (called fixed-parameter algorithm), a computable function f : N→ N,
and a constant c such that, “(x, k) ∈ L” can be decided byA in time bounded by f(k)·|(x, k)|c.
The class of FPT problems is called FPT.

It should be clear that P ⊆ FPT as you can let f be a constant function.

A classical example of parameterized problem would be Vertex Cover parameterized by
the solution size. We quickly point out that when the parameter is not explicitly given, it
usually means that the parameter is the solution size. Hence, it would be standard to refer to
this parameterized problem simply as Vertex Cover. It is well known that Vertex Cover,
Independent Set, and Dominating Set are NP-complete problems, and reducing one to
other is not difficult in the classical setting.

A straightforward FPT algorithm for Vertex Cover is the following: Consider an edge
that is not already covered and try including one endpoint or the other (at least one of them
has to be since the edge must be covered). Because we look for a solution of size k, the
recursive choices made with this strategy correspond to a binary tree of depth k. Therefore,
a naive analysis already gives time bound O(2k · |E|), where |E| is the number of edges of the
input graph. Vertex Cover even has a polynomial kernel.

However, Independent Set and Dominating Set are thought not to be in FPT (this
will be discussed in more details).

The following result was mentioned in the introduction:

Theorem 1. A parameterized problem is in FPT if and only if it admits a kernel and it is
decidable.

Proof. If the problem is in FPT, then it is decidable. Let f(k) · |(x, k)|c be the bound on
an FPT algorithm for this problem. We can run the first |(x, k)|c+1 steps of this algorithm.
If it terminates, we can return a trivial YES-instance or NO-instance as a kernel. If it does
not terminate then it must be that f(k) > |(x, k)|, meaning that we can return the original
instance as a kernel.

Conversely, if the problem admits a kernel and is decidable, we can compute a kernel in
polynomial time, and then, since the problem is decidable, we can compute the answer with
a running time bound depending only on the parameter. The total running time suffices for
membership in FPT.

The equivalence between the two notions showcases that finding a parameter for which a
problem becomes FPT means that this parameter is a “good” estimate of the hardness of an
instance. Finding good parameters for a problem is a complicated task.

The very successful notion of reduction on which classical complexity is based, is also used
to classify parameterized problems. However, the crucial difference is that parameter growth
must be controlled.

Definition 3. Given two parameterized problems A,B over the same alphabet, a parame-
terized reduction from A to B is an algorithm A that, given an instance (x, k) of A, outputs
an instance (x′, k′) of B such that:
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� (x, k) is a yes-instance of A if and only if (x′, k′) is a yes-instance of B

� k′ ≤ g(k) for some computable function g

FPT is closed under fpt-reductions, the parameterized reductions such that A runs in
FPT time. Let us point out that while this notion of reduction with an FPT algorithm
is standard, parameterized classes involving space restrictions such as XNLP must use a
different restriction on the reduction algorithm. We use pl-reductions (where A should run
using f(k) + O(log n) space), and ptl-reductions (where A should run in FPT time using
f(k) log n space).

Note that the simple reduction from Independent Set to Vertex Cover by taking the
complement of the solution is not a parameterized reduction because a solution of size k is
mapped to a solution of size n− k. On the contrary, Independent Set and Clique can be
reduced to one another because the simple reduction consists of considering the complemented
graph and preserves the solution size.

We now introduce the W hierarchy which can be thought of as a parameterized equivalent
of the polynomial hierarchy.

Definition 4. A boolean circuit, is a circuit consisting of boolean input gates, AND, OR, and
NOT gates, and a single output gate.

The problem Weighted Circuit Satisfiability asks whether we can satisfy (i.e. the
output gate should be 1) a given boolean circuit with only k input gates with value 1. The
parameter is k, the bound on the Hamming weight of a satisfying assignment.

If we restrict the problem to circuits having constant depth d and weft t, we obtain the
problem Weighted Weft-t-Depth-d Circuit Satisfiability. The weft of a circuit is
the maximum number of gates with unbounded inputs on a path from an input gate of the
circuit to its output gate. The class of parameterized problems that can be reduced to this
problem for some value of d, is denoted by W[t].

W[0] is FPT, and W[i] ⊆ W[j] for all i ≤ j. The hierarchy is believed to be strict.
Independent Set is W[1]-complete, and Dominating Set is W[2]-complete. For t ≥ 2,
Weighted Depth-t SAT, the problem of finding an assignment with at most k true variables
for a boolean formula with parenthesis depth at most t, is W[t]-complete.

It is commonly assumed that FPT 6= W[1], hence to prove that a problem is believed not
to be in FPT, W[1]-hardness results are given. Note that this assumption is stronger than P
6= NP because W[1] ⊆ NP.

Fine-grained parameterized complexity uses stronger assumptions on the optimal complex-
ity of SAT.

k-SAT
Input: A CNF formula ϕ with at most k variables per clause
Parameter: k.
Question: Is ϕ satisfiable ?

Let sk be the infimum over positive reals ε such that there exists an algorithm running in
time O(2εn) to solve k-SAT, where n is the number of variables.
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The Exponential Time Hypothesis (ETH) states that s3 > 0. This implies that there
is no 2o(n) time algorithm for 3-SAT. By reducing k-SAT to some problem, we can conclude
that there is no 2o(f(n)) time algorithm for it under the ETH. The ETH implies FPT 6= W[1],
hence P 6= NP.

The Strong Exponential Time Hypothesis (SETH) states that lim
k→+∞

sk = 1. This

means that for some arbitrary formula, there is no algorithm significantly better than testing
every possible assignment. By reducing k-SAT to some problem with the new parameter
bounded independently of the number of clauses, we can prove that a running time of the
form O

(
ck|x|O(1)

)
has optimal c under the SETH. While this assumption is considered less

likely by part of the computational complexity community, note that this mainly allows to
express neatly the hardness result obtained from a reduction but is not used in the reduction.
Furthermore, it indicates that trying to beat the lower bound is at least as hard as disproving
the SETH.

2.3. Graph decompositions

One approach to solving hard problems on graphs that have a nice structure, is to first
compute a decomposition of the graph and then apply an efficient algorithm on the decom-
position. The decompositions that we will consider are well suited to the design of dynamic
programming.

Definition 5. A tree decomposition of a graph G = (V,E) is a pair (T,X ) where T is a tree
and X = {Xt}t∈T is a set of bags such that :

� bags contain vertices (elements of V )

� for v ∈ V , the bags that contain v form an induced subtree of T (they are connected)

� every vertex v ∈ V is contained in at least one bag

� for every edge uv ∈ E, there is a bag Xt that contains u and v.

The width of a tree decomposition is defined as maxt∈T {|Xt| − 1}.
The treewidth of G is the minimal width over all possible tree decompositions of G, we will

denote it by tw(G).

The pathwidth of G is the minimal width over all possible tree decompositions of G where
the tree is a path, we will denote it by pw(G).

••

•

•

••

•
•

••

••

• •

•

•
••

Figure 1: A graph and one of its tree decompositions
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Definition 6 (Nice tree decomposition). A nice tree decomposition of a graph G is a rooted
tree decomposition (T, {Xt}t∈V (T )) such that:

� the root and leaves of T have empty bags; and

� other nodes are of one of the following types:

– Introduce vertex node: a node t with exactly one child t′ such that Xt =
Xt′ ∪ {v} with v /∈ Xt′ . We say that v is introduced at t.

– Forget vertex node: a node t with only one child t′ such that Xt = Xt′ \ {v}
with v ∈ Xt′ . We say that v is forgotten at t.

– Join node: a node t with two children t1, t2 such that Xt = Xt1 = Xt2 .

For each node t of the decomposition, we define a partial graph Gt = G
[⋃

s≤tXs

]
−E(G[Xt]).

Note that edges of partial graphs appear at forget vertex nodes and that they correspond
to adding edges between the forgotten vertex and its neighbours.

From a tree decomposition T = (T, {Xt}t∈V (T )) of G of width k, a nice tree decomposition
of width k with O(k|V (G)|) nodes can be computed in time O(k2 · max(|V (T )|, |V (G)|))
[Klo94].

The state of the art for FPT computation of a tree decomposition of size k (or a certificate
that the input has greater treewidth than k) is an algorithm running in time kO(k3) ·n [Bod96].
There is also a very recent 2-approximation algorithm running in time 2O(k) · n [Kor21].

Since the number of edges of a graph is at most tw ·n, this decomposition is only interesting
for sparse graphs. This contrasts with clique-width which captures simple dense graphs.

To define clique-width and k-expressions, we first define labeled graphs and operations on
them.

Definition 7. A k-labeled graph is a triple G = (V,E, γ) where (V,E) is a graph and γ :
V → {1, . . . , k} is a function called labeling function. We let V (G), E(G), and γ(G) denote
the set of vertices, set of edges, and labeling function of labeled graph G.

Given a k-labeled graph G = (V,E, γ), we refer to γ−1({i}) by vertices of label i or even
simply label i.

We will only consider undirected graphs in the following but this notion can be extended
to directed graphs.

Definition 8. For two k-labeled graphs G1, G2, G1 ⊕G2 is their disjoint union.

For a given k-labeled graph G, ρi→j(G) is the labeled graph obtained from G when changing
the label of vertices labeled i to j.

For a given k-labeled graph G, ηi×j(G) is the labeled graph obtained from G by adding
edges between vertices labeled i and vertices labeled j.

The graph consisting of a single vertex v labeled i is simply denoted i(v).

A k-expression is a term that defines a labeled graph using these operations.

Definition 9. The clique-width of a graph is the minimal k such that it can be represented
by a k-expression.
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Definition 10. A linearized version of clique-width called linear clique-width corresponds to
the minimum width of k-expressions such that disjoint union operations must contain a single
vertex on one side.

Note that it may happen that an edge having its endpoints in two different labels i and j
is already present in the graph G before performing the join ηi×j(G). Despite that the edge
is not produced twice, the existence of such a situation may be problematic in our algorithms
when we only consider a compact representation of G. To circumvent this problem, we can
assume that every edge of a graph appears at most once in the join of our given k-expressions.
More precisely, when performing a join operation ηi×j(G), we can assume that none of the
edges in G has its endpoints in i and j, respectively. An expression with such property can
be computed in time O(k2 · n) from a given arbitrary expression of size n [CO00].

The following inequality stands between treewidth and clique-width : cw(G) ≤ 3 ·2tw(G)−1

Hence, the class of graphs of bounded treewidth is included in the class of graphs of bounded
clique-width. Graphs of bounded clique-width can be dense unlike graphs of bounded
treewidth. A simple example is the complete graph on n vertices: it has treewidth n − 1
(a single bag containing all vertices) but linear clique-width 2 (add vertices one by one by
joining a label containing the new vertex to a label containing other vertices and then rela-
beling the new vertex).

Pathwidth can be compared to the other considered parameters with tw(G) ≤ pw(G)
(obvious from definition) and cw(G) ≤ lcw(G) ≤ pw(G) + 2 (use one label per vertex in
the bag and an additional label for forgotten vertices). This means that a complexity lower
bound involving pathwidth also stands for treewidth and clique-width.

There is no known FPT algorithm to obtain an optimal k-expression. The best approxima-
tion algorithms running in FPT time provide only expressions with exponentially too many
labels [Oum05]. Graphs of clique-width at most 3 (called distance hereditary graphs) can be
recognized in polynomial time [CHL+12]. Recognition of graphs of clique-width at most k for
k > 3 is an open problem, hence for algorithms parameterized by clique-width, we assume
that the graph is given with a k-expression describing it.

The monadic second order logic of graphs consists of formulae on vertices, edges, sets of
edges and sets of vertices with predicates for equality, membership, adjacency and incidence
testing. MSO2 stands for the Monadic Second Order logic of graphs in which quantification
over sets of vertices and sets of edges is possible, in MSO1 only quantification over sets of
vertices is allowed. A common extension called counting monadic second order logic consists
of adding modular counting predicates.

A theorem by Bruno Courcelle shows that a graph property defined by a formula ϕ in MSO2

can be checked in time f(|ϕ|, tw) · n on graphs of treewidth tw [Cou90]. Similarly, a graph
property defined by a formula ϕ in MSO1 can be checked in time g(|ϕ|, cw) · n on graphs
of clique-width cw [CMR00]. The original hypothesis that a decomposition is given as an
input is not necessary due to approximation algorithms for both decompositions. Courcelle’s
theorems give a very general result, however the running time of algorithms constructed by
the proof is often irrelevant. These results are mainly interesting from a theoretical point of
view.

Definition 11. A tree-partition of a graph G = (V,E) is a partition U = {V1, . . . , V`} of V
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such that the quotient2 of G by U is a forest.

The tree-partition-width of a graph is the minimum over its tree-partitions of the maximum
size of a bag. We denote it by tpw(G).

Tree-partition-width has also been called strong treewidth, and can equivalently be defined
by fixing a tree embedding and then mapping the vertices of the graph to this tree while
preserving adjacency (edges with both endpoints mapped to the same vertex of the tree are
considered to be preserved). Similarly to treewidth, we call bags the set of vertices of the
graph that are mapped to a given vertex of the tree. Keep in mind that the bags of a tree-
partition are disjoint. However, by adding an intermediate bag on each edge of the tree, which
contains the union of the bags on the edge’s endpoints, we obtain a tree decomposition. This
shows tw(G) ≤ 2 tpw(G)− 1.

Given a graph width measure µ, we call logarithmic µ the parameter µ/ log n where n is
the number of vertices. This means the width µ of an instance is bounded by k log n when k
is this parameter.

2.4. Related work

The name XNLP was introduced recently by Bodlaender et al. [BGNS21], but the class was
first studied by Elberfeld et al. [EST15], who called it N [f poly, f log]. It is the class of prob-
lems that can be solved nondeterministically in time f(k)nO(1) and space f(k) log(n). This
class is not closed by fpt-reductions, but is closed under parameterized logspace reductions
(pl-reductions), which require the reduction to use f(k) + O(log n) space. A less restrictive
reduction type, for which XNLP would still be closed, is a reduction that uses O(f(k) log n)
space and O(g(k)nc) time. Guillemot introduced the class WNL which is the variant of XNLP
that is closed by fpt-reductions [Gui11].

The first established complete problems for XNLP are Timed Nondeterministic Cellu-
lar Automaton and Longest Common Subsequence, due to Elberfeld et al. [EST15].
Bodlaender et al. followed up with a large collection of complete problem including a
“chained” variant of SAT, Bandwidth, List Coloring parameterized by pathwidth, and
some problems related to scheduling and reconfiguration.

Longest Common Subsequence and Bandwidth were already known to be hard for
W[t] for any constant t. This can be generalised by the following statement proved in
[BGNS21].

Lemma 1. If a parameterized problem Q is XNLP-hard, then it is hard for class W[t] for
each t ∈ Z+.

XNLP is contained in XP because the reachable configurations of the nondeterministic
Turing machine can be tabulated using nf(k) space and then the computation can be done
via dynamic programming on these configurations in time polynomial in the number of con-
figurations.

The following conjecture on XNLP-hard problems is an equivalent generalisation of a con-
jecture on Longest Common Subsequence by Pilipczuk and Wrochna [PW18].

2In the quotient graph, the vertices are the parts of the partition, and there is an edge between two parts if
there is a vertex in each part so that the vertices are adjacent.
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Conjecture 1 (Slice-wise Polynomial Space Conjecture). XNLP-hard problems do not have
an algorithm that runs in time nf(k) and space f(k)nc, with f a computable function, k the
parameter, n the input size, and c a constant.

XNLP membership is closely related to the existence of a dynamic programming algorithm,
while XNLP-hardness can be thought of as showing that we can’t hope for better algorithms
if the conjecture holds.

The following problems shown to be XNLP-complete in [BGNS21], are often used for re-
ductions.

Chained Positive CNF-SAT
Input: r sets of Boolean variables X1, X2, . . . Xr, each of size q; an integer k ∈ N; Boolean
formula φ, which is in conjunctive normal form and an expression on 2q variables, using
only positive literals; for each i, a partition of Xi into Xi,1, . . . , Xi,k that are all of the
same size.
Parameter: k.
Question: Is it possible to satisfy the formula

∧
1≤i≤r−1

φ(Xi, Xi+1) by setting from each

set Xi,j exactly 1 variable to true and all others to false?

Chained Multicolored Clique
Input: A graph G = (V,E), a partition of V into sets V1, . . . , Vr, such that each edge
uv ∈ E with u ∈ Vi and v ∈ Vj satisfies |j − i| ≤ 1, and partitions Vi,1, . . . , Vi,k of each Vi.
Parameter: k.
Question: Is there a subset W ⊆ V such that for all i, j |W ∩ Vi,j | = 1, and, for each
i ∈ [r − 1], G[W ∩ (Vi ∪ Vi+1)] is a clique ?

2.5. Overview of the contribution

In Section 3, we find new complete problems for XNLP. In particular, we find complete
problems for parameters corresponding to denser settings. This is done by using the param-
eters linear clique-width and linear mim-width. We also obtain completeness for a variant of
Bandwidth.

Since XNLP seems naturally tied to linear structures and dynamic programming, we natu-
rally turn our attention to dynamic programming on ‘treelike decompositions’. Indeed, most
dynamic programming schemes generalize to this setting. This is the reason why many stan-
dard graph decompositions are based on a tree structure, while we had to restrict ourselves
to linear variants for XNLP.

In the following sections, we look at possible generalizations of XNLP to treelike structures.
In Section 4, we first consider List Coloring on trees and obtain membership in L, which
is generalized to XL membership for graphs of tree-partition-width k. In Section 5, we
define the class XALP, a natural superset of XNLP that extends it to treelike structures, and
show completeness of Tree-Chained Multicolored Clique, which allows us to translate
hardness for linear width measures to treelike width measures. In Section 6, we show that
computing the tree-partition-width is XALP-complete, but approximating it can be done in
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polynomial time.

The content of this report corresponds mostly to [BGJ22a, BGJ22b, BGJ+22c, BGJ+22d],
see Appendix B for more details on personal contribution.

3. New completeness results for XNLP

The main intuition about XNLP-complete problems is that they are hard parameterized
problems on linear structures. Another way of expressing it is that to certify a solution we
require something of polynomial size but locally we only need a certificate of size f(k) log(n).
All known XNLP-complete problems are solvable by dynamic programming in XP time and
XP space and have some form of linear structure. This is conjectured to be optimal for this
running time, see Conjecture 1.

Some XNLP-complete problems parameterized by (logarithmic) pathwidth are given in
[BGNS21]:

� List Coloring parameterized by pathwidth.

� Independent Set and Dominating Set parameterized by logarithmic pathwidth.

A collection of flow problems parameterized by pathwidth were also shown to be XNLP-
complete in [BCvdW22].

Since graphs of bounded pathwidth are sparse, a natural question to ask is whether XNLP
requires this sparsity. Graphs of bounded linear clique-width can be dense (e.g. a clique has
linear clique-width 2), but have a linear structure similarly to graphs of bounded pathwidth.

We give several examples of relatively natural problems parameterized by linear clique-
width that are XNLP-complete in [BGJ+22c].

As already mentioned in Subsection 2.3, the linear clique-width is bounded by the path-
width. This means that XNLP-hardness for (logarithmic) pathwidth implies XNLP-hardness
for (logarithmic) linear clique-width. Similarly, XNLP membership for (logarithmic) linear
clique-width implies XNLP membership for (logarithmic) pathwidth.

3.1. Complete problems for linear clique-width

While List Coloring parameterized by pathwidth is XNLP-complete, it seems to be too
hard parameterized by linear clique-width. Indeed, it is NP-complete on cographs (graphs
of clique-width at most 2). The easier Coloring parameterized by linear clique-width has
already been studied in fine-grained parameterized complexity and has an optimal running
time of nO(2k) [FGL+19] using a dynamic programming algorithm. This makes it a plausi-
ble candidate for XNLP-completeness. We show XNLP-completeness of the following three
problems:

Coloring
Input: A graph G described by a given linear k-expression, and an integer C.
Parameter: k.
Question: Is there a proper coloring of G using at most C colors ?
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Maximum Regular Induced Subgraph
Input: A graph G described by a given linear k-expression, and two integers W and D.
Parameter: k.
Question: Is there a D-regular induced subgraph of G on at least W vertices?

Maximum Cut
Input: A graph G = (V,E) described by a given linear k-expression, and an integer W .
Parameter: k.
Question: Is there a bipartition of V into (V1, V2) such that |E(V1, V2)| ≥W?

All three problems have already been studied and are known to admit XP algorithms and
be W[1]-hard when parameterized by clique-width [AEIM14, MT09, MS08, BGP13, Wan94,
FGLS14]. Our hardness is stronger and does not require much additional work, which in our
opinion showcases XNLP as a meaningful tool for the classification of parameterized problems.

Theorem 2 ([BGJ+22c]). Coloring, Maximum Regular Induced Subgraph, and Max
Cut parameterized by linear clique-width are XNLP-complete.

3.2. Complete problems for logarithmic pathwidth and logarithmic linear
clique-width

We provide new XNLP-complete problems for the parameter logarithmic pathwidth, and show
that these problems and the previously known XNLP-complete problems for this parameter
[BGNS21] are also complete for the parameter logarithmic linear clique-width. Our results
are summarised below.

The motivation to study the logarithmic linear clique-width or logarithmic pathwidth comes
from the observation that many FPT algorithms with linear clique-width or pathwidth as
parameter have a single exponential time dependency on the parameter. Thus, if linear
cliquewidth or pathwidth is logarithmic in the size of the graph, these algorithms turn into
XP algorithms. This allows us to relate such algorithms to Conjecture 1, and argue about
space requirements of single exponential FPT algorithms.

Theorem 3 ([BGJ+22c]). When parameterized by logarithmic pathwidth or logarithmic lin-
ear clique-width, Independent Set, Dominating Set, q-List-Coloring and q-Coloring
for q ≥ 3, and Odd Cycle Transversal are XNLP-complete, and Feedback Vertex Set
is XNLP-hard.

The problems q-List-Coloring and q-Coloring correspond to variants of List-
Coloring and Coloring where the sought coloring assigns only colors from [q]. Odd
Cycle Transversal is the problem of finding in a graph a subset S of vertices such that
every odd cycle contains a vertex of S. This is equivalent to asking that the deletion of S
leaves the graph bipartite. Feedback Vertex Set is the problem of finding in a graph a
subset of vertices whose deletion leaves the graph acyclic.

Lokshtanov et al. [LMS18] established tight lower bounds for these problems for the pa-
rameter pathwidth under the Strong Exponential Time Hypothesis. Several of our gadgets
are based on those used for these lower bounds by [LMS18].
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3.3. Complete problems for other width measures

During a visit of Lars Jaffke and Paloma T. Lima, some problems parameterized by linear
mim-width were shown to be XNLP-complete.

Theorem 4 ([BGJ+22c]). Independent Set, Dominating Set, q-Coloring for q ≥ 5,
and Feedback Vertex Set are XNLP-complete when parameterized by the linear mim-
width of the input graph.

The linear mim-width of a vertex ordering σ corresponds to the maximum size of an induced
matching across the cut (σ−1([i]), σ−1([i + 1, n])). The linear mim-width of a graph is the
minimum linear mim-width over all vertex orderings.

3.4. Bandwidth variants

The Bandwidth problem was shown to be XNLP-complete even restricted to caterpillars in
[BGNS21, Bod20]. It can be expressed as the problem of finding a permutation of the vertices
of a graph such that the resulting adjacency matrix as nonzero entries only along its diagonal.

Bandwidth
Input: A graph G = (V,E) and an integer k.
Parameter: k.
Question: Is there an ordering α : V → [n] such that for each uv ∈ E, |α(u)−α(v)| ≤ k?

We consider the following variants.

Bipartite Bandwidth
Input: A bipartite graph G = (X,Y,E) and an integer k.
Parameter: k.
Question: Are there orderings α : X → [n] and β : Y → [m] such that for each uv ∈ E,
|α(u)− β(v)| ≤ k?

A possible application of this problem is as follows. Let a matrix M be given. Create a
vertex xi ∈ X for each row i and a vertex yj ∈ Y for each column j, and let xi be adjacent
to yj if and only if Mi,j 6= 0. This graph has bipartite bandwidth at most k if and only if
the rows and columns of M can be permuted (individually) in such a way that all non-zero
entries are within k distance from the main diagonal.

Topological Bandwidth
Input: A graph G, and an integer k.
Parameter: k.
Question: Is there a subdivision G′ of G of bandwidth at most k?

This problem has applications for solving systems of equations where the edge subdivision
corresponds to creating the copy of a variable.

We obtain the following result.

Theorem 5 ([BGJ+22c]). Bipartite Bandwidth is XNLP-complete for trees.
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Open Question 1. Is Topological Bandwidth XNLP-complete?

It seems that reducing from Bandwidth by replacing each vertex by a big enough clique
might work. Membership is not much harder to obtain than for Bandwidth.

4. List coloring on trees

List Coloring parameterized by pathwidth is XNLP-complete, but can we extend this result
to the parameter treewidth? As a first step towards answering this question, we consider the
problem on trees, which have unbounded pathwidth and treewidth 1.

Note that trees have pathwidth O(log n). This implies that the problem can be solved
nondeterministically with O(log2 n) space and polynomial time. We first show that we can
actually solve the problem deterministically with O(log2 n) space and polynomial time. We
then improve the space complexity to O(log n). Proofs of these results are given in [BGJ22a].

Trees are 2-list-colorable meaning that if every vertex has at least 2 available colors, then
we are sure to find a proper coloring satisfying the constraint. This implies that the hard part
of the problem is to propagate the information from vertices that have a single available color.
Using this it is relatively simple to design a linear time algorithm [JS97], but this algorithm
uses linear space. We say that a vertex is critical if we manage to compute from part of the
constraints on other vertices that at most one color is available for it.

4.1. A first algorithm

We define a procedure solve(v, p) which given a vertex v and number p ∈ {0, 1, . . . , n},
determines whether the subtree Tv rooted on v can be list coloured, where for p ≥ 1 there is
an additional constraint that v cannot receive the pth colour in L(v). If solve(v, p) fails for
two different values of p (or for p = 0), then we can reject.

Let T be a tree with root r, non-heavy children v1, . . . , vk and heavy child u. The algorithm
works as follows.

1. For i = 1, . . . , k, we recursively verify that Tvi can be list coloured (solve(vi, 0)); we
reject if any of these rejects.

2. If |L(r)| ≥ d(r) + 1 = k + 2, then we are ‘non-critical’: we free up our memory and
recursively verify whether Tu can be list coloured.

3. Otherwise, we try to find the smallest p1 ∈ {1, . . . , |L(r)|} for which we can assign v the
p1th colour in its list and extend to a list colouring of T \ Tu.

� If no such p1 exists, we reject.

Next, we try to find the smallest p2 > p1 in {1, . . . , |L(r)|} for which we can assign v
the p2th colour in its list and extend to a list colouring of T \ Tu.

� If such p2 exists, we are again ‘non-critical’, free up our memory and recursively
verify whether Tu can be list coloured.

� If p2 does not exist, then r must get colour p1 and we run solve(u, p1).
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Theorem 6. The algorithm solves List Colouring on n-vertex trees in polynomial time
and O(log2 n) space.

We simply give the proof of the space bound, as the running time analysis is more technical.
We stress the fact that traversing a subtree can be done in logspace, hence we can also count
the number of vertices in a subtree, find the subtree with the most or the least vertices, and
other similar procedures.

Claim 1. The algorithm uses O(log2 n) bits of space.

Proof. Denote by S(n) the maximum amount of memory used for a tree of order n. The largest
subtree, and the next subtree in the size ordering can be computed in O(log n) space and linear
time. The local variables require O(log n) memory, and we free their space before recursing
to the largest subtree. We conclude that we have S(n) ≤ max(O(log n) + S(n/2), S(n− 1)).
The master theorem allows us to conclude that S(n) = O(log2 n).

4.2. Improving space complexity

It turns out that with a few additional ideas, we can improve our algorithm to show mem-
bership in L. The algorithm becomes significantly more technical and will not described here,
but a description is given in [BGJ22a].

The first idea is that we allow ourselves to store more information about the current choice
when processing smaller subtrees. In particular, we partition subtrees by size in ranges of the
form [s(v)/22

j
, s(v)/22

j−1
[, where s(v) is the number of vertices in the subtree rooted in v,

and store about 2j bits when processing subtrees in this range. Since
∑k

i=0 2j = 2k+1, having
this amount of bits stored only costs O(log n) space.

The reason why we can afford to store this amount of information is that the more we get
in the ranges of large subtrees, the less subtrees to check there are. Since we can get in a
‘non-critical’ state, whenever there are more colors remaining than the number of subtrees to
check. More precisely, the subtrees in the ranges [s(v)/22

j+1
, s(v)/22

j
[ for j from k to 1, have

size at least s(v)/22
k

but their total size is at most s(v) so there are at most 22
k

of them.
By checking the subtrees range by range by increasing range, we can use only about 2k bits
to encode the index of a color in the set of colors that are not forbidden by smaller subtrees.
Encoding colors like this requires to recursively recompute a color whenever necessary.

4.3. Generalisation to bounded tree-partition-width

We can extend the previous result to the parameterized setting by showing that List Color-
ing is in XL parameterized by the width of a given tree-partition. This gives an XP algorithm
for the corresponding parameterized problem. We should not expect an FPT algorithm as
List Coloring is already W[1]-hard parameterized by the vertex cover number which is an
upper bound to tree-partition-width.

First, note that a graph of tree-partition-width k is 2k-list-colorable. Then, the previous
idea of criticality still works because vertices contained in some bag of a tree-partition are
only adjacent to vertices of neighbouring bags. A subtree can now forbid at most k colors
instead of at most one, but this only shifts our guarantees by a function of k.
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Using the above and the logspace algorithm for trees, we obtain an algorithm using
O(k log k log n) space.

The parameter treewidth does not seem to allow such techniques that are based on local
interactions, because some vertices could be in many bags. Note that generalizing the pre-
vious result to treewidth would contradict Conjecture 1. It turns out that List-Coloring
parameterized by treewidth is not only XNLP-hard but also complete for the generalization
of XNLP introduced in the next section.

5. XALP: a generalization of XNLP to treelike structures

XNLP is defined via Nondeterministic Turing Machines, and appears to be tied to linear
structures. We can compare that to runs of NTMs being paths in the graph of configurations.
This turns to a tree if we replace NTMs by Alternating Turing Machines, and with some
tricks we can ask for the trees to have a specific structure.

5.1. Definition of XALP

Definition 12. Informally, an Alternating Turing Machine (ATM) is simply a Nondeter-
ministic Turing Machine with some additional states that require that all transitions lead to
acceptance. We call co-nondeterministic step this action of going to a constant amount of
independant configurations and checking if each leads to acceptance. A run is then a tree and
the running time of the ATM refers to its depth while the treesize refers to its total size.

We can always ask for co-nondeterministic steps to lead to exactly two states. Indeed, they
can only lead to a finite amount of states, and they can be replaced by a finite amount of
co-nondeterministic steps that lead to two states.

XALP is the class of problems that can be solved by an Alternating Turing Machine working
in f(k)nO(1) treesize and f(k) log n space.

Alternating Turing Machines have been extensively studied in the classical setting. In par-
ticular, the class of languages recognizable by ATMs with polynomial tree size and logarithmic
space is known to be equal to the class of languages recognizable by NTMs equipped with
a stack running in polynomial time and logarithmic space (not counting the stack), and to
SAC1, a class defined by circuits.

Already in the classical setting, it is believed that NL ( SAC1. This already justifies the
assumption XNLP ( XALP, as the classical classes are the ‘projections’ to constant parameter
of the parameterized classes.

The classical equivalences can be translated in the parameterized setting:

Theorem 7 ([BGJ+22d]). The following parameterized complexity classes are all equal.

1. NAuxPDA[f poly, f log], the class of parameterized decision problems for which in-
stances of size n with parameter k can be solved by a non-deterministic Turing machine
with f(k) log n memory in f(k)nO(1) time when given a stack, for some computable
function f .
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2. The class of parameterized decision problems for which instances of size n with parame-
ter k that can be solved by an alternating Turing machine with f(k) log n memory whose
computation fits in a binary tree on f(k)nO(1) nodes, for some computable function f .

3. The class of parameterized decision problems for which instances of size n with parame-
ter k that can be solved by an alternating Turing machine with f(k) log n memory whose
computation fits in a tree which is obtained from a binary tree of depth O(log n) + f(k)
by subdividing each edge f(k)nO(1) times, for some computable function f .

4. A[f poly, f log, f + log], the class of parameterized decision problems for which in-
stances of size n with parameter k can be solved by an alternating Turing machine with
f(k) log n memory in f(k)nO(1) treesize and using O(log n) + f(k) co-nondeterministic
steps per computation path, for some computable function f .

The proof is not given here, but is in [BGJ+22d].

5.2. Complete problems

The characterisation 3 is used to obtain XALP-completeness of the following problem.

Tree-Chained Multicolored Clique
Input: A graph G = (V,E), a binary tree T = (I, F ), and a partition of V into sets
(Vi)i∈I , such that each edge uv ∈ E with u ∈ Vi and v ∈ Vj satisfies i = j or ij ∈ F , and
partitions of each Vi, Vi,1, . . . , Vi,k.
Parameter: k.
Question: Is there a subset W ⊆ V such that for all i, j |W ∩ Vi,j | = 1, and, for each
ij ∈ F , G[W ∩ (Vi ∪ Vj)] is a clique ?

We encode the simulation of an Alternating Turing Machine with adequate resources within
this problem and also solve it with an Alternating Turing Machine with adequate resources
(proof in [BGJ+22d]). This shows XALP-completeness of the problem. We do not use all of
the clique edges to encode the simulation so it would be possible to obtain XALP-completeness
of a variant asking for grids instead of cliques. This could be used to obtain XALP-complete
problems for planar problems, tiling problems, or width parameters that are sparser than
those previously mentioned. In particular, this should easily give that Binary CSP when
parameterized by cutwidth is XNLP-complete, and when parameterized by treecut-width is
XALP-complete. Binary CSP is basically another formalization of Multicolored Clique,
where the graph is formed by identifying all vertices in a same part of the partition, and then
having a list of available colors to assign the resulting vertices that behaves like choosing the
vertex of the corresponding part.

Using this problem and the previous XNLP-hardness proofs, a lot of XALP-completeness
results are almost immediate. Indeed, the gadgets from the XNLP-hardness can often be
reused without changing anything. In [BGJ+22d], we give the following XALP-complete
problems:

� List Coloring and Pre-Coloring Extension parameterized by treewidth.

� Tree-Chained CNF-SAT and more structured variants.

� The flow problems from [BCvdW22] parameterized by treewidth.
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� Max Cut, Maximum Regular Induced Subgraph parameterized by clique-width.

� Independent Set, Dominating Set and variants parameterized by logarithmic
treewidth.

5.3. Comparison to known classes

XNLP is a subset of XALP by definition because a NTM is a special case of ATM. For this
reason, XALP-hard problems are also XNLP-hard and as such Conjecture 1 also applies to
them. This also means that they are W[t]-hard for all positive integers t.

In simpler terms, a problem that is XALP-complete, can be solved in nf(k) time and nf(k)

space, but we conjecture that they can’t be solved in nf(k) time and f(k)nO(1) space. If we
could solve it in f(k)nO(1) time, it would imply P = NP.

There are other hierarchies in parameterized complexity than the W hierarchy. It might
be possible to relate them to XALP, in a similar way to the way XNLP relates to the W
hierarchy.

Open Question 2. Is there an inclusion of the A hierarchy or the AW hierarchy in XALP ?

6. Computing tree-partitions

As already mentioned in the preliminaries, treewidth is bounded by tree-partition-width tw ≤
2 tpw−1. The converse is not true – consider for example a fan, i.e. a path with an additional
vertex adjacent to all vertices of the path. Nonetheless, it is possible to bound tree-partition-
width by the treewidth and the maximum degree: tpw = O(∆ tw). The first proof is due to
an anonymous reviewer of Ding and Oporowski, the constant is slightly improved by Wood
in [Woo09]3.

In [BCvdW22], the XNLP-hardness results are constrasted with FPT algorithms parame-
terized by tree-partition-width. Although these results were theoretically interesting on their
own, they required a tree-partition to be given. This motivated the study of the parameterized
complexity of computing tree-partitions.

Computing an optimal tree-partition is XALP-complete, hence intractable. This can be
seen as a form of generalization of the XNLP-completeness of Bandwidth to the treelike
setting.

Tree-Partition-Width
Input: A graph G and an integer k.
Parameter: k.
Question: Is the tree-partition-width of G more than k?

Theorem 8 ([BGJ22b]). Tree-Partition-Width is XALP-complete.

However, computing a tree-partition of approximate width is FPT. This result can be
obtained as a consequence of the result of Ding and Oporowski [DO96]. They only give a

3Note that the claimed constant in the abstract is a mistake.
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characterisation of tree-partition-width by forbidden topological minors. However, finding
a fixed topological minor can be done in FPT time, and their proof explicitly constructs
a tree-partition. This is sufficient to obtain a tree-partition of width f(k) in FPT time or
certify that the tree-partition-width of the graph is greater than k, for some function f that
is a tower of exponentials. The structure of their argument can be mostly reused to obtain a
simpler approximation algorithm. We briefly explain the scheme of the approximation.

Let G denote the given graph and k be the target value for the tree-partition-width.

1. We compute a (possibly approximate) tree decomposition with target value 2k − 1,
and obtain a decomposition of width w. If the treewidth is more than this value, the
tree-partition-width must be more than k.

2. We compute the pairs of vertices that are connected by at least b ≥ 2k−1 vertex disjoint
paths. These pairs are the edges of the auxiliary graph Gb on V (G).

3. We contract the connected components of Gb in G to obtain the auxiliary graph H.

4. We compute the 2-connected components of H. The degree within such a component
is bounded by a function of k (combinatorial argument). If we observe a degree above
this bound we report the tree-partition-width to be more than k.

5. We use the construction that gives tpw = O(∆ tw) on each 2-connected component
of H. We can have one vertex to be the single vertex of its bag for free, we do so for
cutvertices as they are in several components (could be unbounded). We then combine
the tree-partition of the 2-connected components into a tree-partition of H.

6. We conclude by replacing vertices of H by the vertices of G of the corresponding com-
ponent of Gb. This gives a tree-partition of G.

Using this procedure, we can obtain the following result.

Theorem 9 ([BGJ22b]). There is an algorithm that computes a tree-partition of width O(k7)
or reports that the tree-partition-width of the input graph is greater than k in time kO(1)n2.

The procedure can be adapted by using different algorithms to obtain running times that
depend less on n and more on k, or conversely; with possibly better bounds on the width.

6.1. Other structural results

Wollan introduced recently the graph parameter treecut-width [Wol15]. Much like tree-
partition-width, this parameter is a strengthening of treewidth. To get an idea of what
this parameter means without getting into the technical details, we simply mention the fol-
lowing result of Wollan [Wol15]: treecut-width is bounded if and only if there is no large grid
immersion.

It came to our attention that the algorithmic results in [BCvdW22] correspond to results
obtained for treecut-width in [GKS15]. This raised the question of how similar the parameters
are, which we answer in [BGJ22b] using insights from the result of Ding and Oporowski
[DO96].

Theorem 10 ([BGJ22b]). Tree-partition-width is polynomially bounded by treecut-width.
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However, the parameters are not bounded by functions of each other. Indeed, the graphs
K3,n have unbounded treecut-width but tree-partition-width 3.

It seems that the algorithmic results obtained in [GKS15] for treecut-width extend to tree-
partition-width, extending the results of [BCvdW22].

7. Conclusion and perspectives

We give new XNLP-complete problems for several structural parameters, but there are still
many other possible parameters to consider. However, this still demonstrates XNLP as a
simple and adequate tool to prove hardness of problems on linear structures.

The extension of XNLP to XALP is nice on two aspects: the definition is quite simple and
makes the link to XNLP clear, and many problems that were complete for XNLP in their
linear form are complete for XALP in their treelike form.

The parameter tree-partition-width is a natural and fruitful parameter which raised some
questions. It would be nice to have an algorithmic meta-theorem similar to Courcelle’s theo-
rem to distinguish problems that can be solved in FPT time parameterized by tree-partition-
width. It would also be nice to find the parameterized class for which List Coloring
parameterized by tree-partition-width is complete.

The parameter treedepth was not studied in our work but the results of Pilipczuk and
Wrochna [PW18] give evidence that natural problems for this parameter are unlikely to be
complete for XALP. Usually this parameter allows for algorithms that use polynomial space.
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A. Course of the internship

October until December Visit of Nicolas Bousquet and Théo Pierron at LIRIS (Lyon) with
Carla. New XNLP-hardness proofs for logarithmic pathwidth and realizing that they
also hold for linear clique-width. XNLP-hardness of Maximum Regular Induced
Subgraph parameterized by linear clique-width. Looking at Bipartite Bandwidth.
Looking at List Coloring on trees, and finding the O(log2 n) algorithm. Continuing
a project on twin-width started with Marcin Pilipczuk at the end of my M1 internship.

January and February Polishing write up of twin-width paper ([JP22]) and submission to
WG22 (accepted). Looking at Max Cut/lcw and Capacitated Red-Blue Domi-
nating Set/pw. Write up of XNLP results for submission to SWAT (rejected). Brief-
ing on discussions of Carla and Hans with Marcin and Micha l Pilipczuk at a workshop in
Bonn at the end of December. Looking at Carla’s idea of ‘brackets’ to improve the List
Coloring algorithm on trees, realizing that it gives logspace membership. Writing up
mid-term report. First (unsuccessful) look at the problem of computing tree-partitions.

March and April Looking seriously into the paper of Ding and Oporowski, concluding on the
approximation scheme. Visit of MC2 team at LIP (Lyon) and presenting the twin-width
result in the local seminar. Write up of the List Coloring paper and submission to ESA
(accepted). Working on strategies for a combinatorial game during a visit of Miloš
Stojaković. Participating to an online workshop on structural directed graph theory.
Visit of AlGCo team at LIRMM (Montpellier).

May and June New XNLP results during visit of Lars Jaffke and Paloma Lima. Write up of
new XNLP results into previous paper, XALP paper, and tree-partition-width paper.
Visit of CombAlgo team at LaBRI (Bordeaux). Working on extremal combinatorics
during and after a visit of Tom Johnston ([BGJJ22]). Comparing treecut-width and tree-
partition-width. Attending WG22. Submission of XNLP paper, XALP paper and tree-
partition-width paper to IPEC22 (accepted and XNLP paper won best paper award).

B. Rough description of personal contribution

I am the main contributor of XNLP-completeness results for logarithmic linear clique-width
and for Maximum Regular Induced Subgraph, of the simple algorithm using O(log2(n))
space for List Coloring on trees, of the approximation algorithms for tree-partition-width,
and of the bound of tree-partition-width by treecut-width.

Although I contributed to all other results, the logspace algorithm for List Coloring on
trees is mostly due to Carla, the construction showing XALP-hardness of Tree-Partition-
Width is mostly due to Hans, and the results on mim-width are mostly due to Lars and
Paloma.
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