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Prerequisites, notations and conventions

Throughout this report, we assume the reader is somewhat familiar with some basic definitions of:
• computability theory: Turing machines, time and space complexity1…
• topology: openess, closeness, compactness…
• group theory: conjugacy, commutators, Cayley graphs, group extensions2…

Any other notion is (hopefully) explained where needed.

Notations
Here are a few notations that we use in this document:

#S Cardinal of a finite set S
Ji, jK Interval {n ∈ N : i ≤ n ≤ j}
vk(w) Value of w ∈ {0, . . . , k − 1}∗ in base k

(big-endian)
n(k) Expression of n ∈ N in base k

Σ A finite alphabet
Σn Words of length n over Σ
Σ∗ Words over Σ
w Reverse (or “mirror”) of w ∈ Σ∗
w|J Restriction of w to J ⊆ J0, len(w)− 1K

S The SMART machine

` Length of the tape
T`,M Action ofM on tapes of length `
fM Action of M on full-shifts (conveyor

belts)

hm(X) m-entropy of X
[w] ∈ G Composition morphism [·] : G∗ 7→ G
A b B A ⊆ B, A locally compact in B

To be perfectly clear, if w = w0 . . . wn−1, then w = wn−1 . . . w0; and if J = {j0, . . . , jk} ⊆ J0, n− 1K,
with j0 < j1 · · · < jk, then w|J = wj0 . . . wjk

.
And for w ∈ G∗ a word over with letters in the group G, then [w] = w0 · w1 . . . wlen(w)−1 ∈ G.

1In Lemma 2.4, we denote NC1 for “Nick’s Class” of complexity of level 1, i.e. the class of languages L ⊆ Σ∗ such that L
is decidable by Boolean circuits with a polynomial number of gates, with at most two inputs and depth O(log n) (see for
example [AB09]). The reader need not be familiar with this class to follow our argument.

2Group extensions are a key ingredient in Chapter 4, but we invite the unfamiliar reader to skip the mathematical technicalities
of the chapter and focus on the informal descriptions and statements.
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PREREQUISITES, NOTATIONS AND CONVENTIONS

General conventions
We also use the following conventions:

X,Y, Z, … Subshifts
x, y, z, … Configurations

i Position in Z
u, v, w, … Patterns/words
Aut(X) Automorphisms of X
G Groups
M Turing machines

Group theory
Our groups always act from the left. If g1, . . . , gn are commuting elements of a group, we write

∏n
i=1 gi

for their ordered product gn · · · g1. In groups of bijections on a set (which almost all our groups are), we
denote composition by ◦.

For G a group, g ∈ G and S ⊆ G a finite set of elements, we denote by |g|S the word norm of g in the
finitely generated subgroup 〈S〉, i.e. the length of the shortest presentation of g in terms of elements of S.

For a, b elements of a group, we use the following conventions for conjugation and commutators:

ab = b−1ab (Conjugacy)

[a, b] = a−1b−1ab (Commutator)

If π ∈ Sym(A) is a permutation, we may regard it as a permutation of A × B by π((a, b)) = (π(a), b).
Slightly abusing the English language, we say a permutation of A × B is B-ignorant, or ignores B, if it
comes from a permutation of A through this formula.
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“Magic’s all numbers and angles and edges and what the stars are doing,
as if that really mattered. It’s all power. It’s all–” Granny paused, and
dredged up her favourite word to describe all she despised in wizardry,
“–jommetry.”
— Terry Pratchett, Equal Rites

“So, ice-swimming on Monday?”
— Ville Salo



General Introduction

General context
Subshifts are sets of colorings (or configurations) defined by families of forbidden patterns. While they

were originally introduced as a way to discretize continuous dynamical systems by cutting their phase
spaces into different colors and studying all the iterations of points by a transformation, thesemathematical
objects started to be studied for themselves and the name subshift appeared.

Over the last two decades, the convergence of the mathematical and computer science communities has
brought group theory as a tool to study the behavior of subshifts, and provide some generalizations. More
precisely, two main directions of study exist:

1. Given a subshift X , its automorphisms (the set of homeomorphisms between X and itself, i.e. the
continuous and bijective recoloring functions that act onX) define a group Aut(X) for composition.
The structure ofAut(X) can be quite rich and complex, and themain direction of work studies which
groups can or cannot embed as subgroups of automorphism groups.

2. Given a group G, one can define subshifts using G as a surface, by considering sets of colorings of
G which do not contain some families of forbidden patterns. The geometry of the groupG can then
influence the behavior of the subshifts of surface G, in particular in terms of aperiodicity.

In this internship, I aim at exploring further the relationship between symbolic dynamics and groups. In
particular, I independently focused on two problems: the existence of distortion in automorphism groups
of subshifts, and the influence of the geometry of a subshift surface on aperiodic configurations.

Distortion in automorphism groups of subshifts
As explained above, a sizeable direction of study considers which groups embed (or cannot embed)

in automorphism groups of one-dimensional subshifts, i.e. colorings of the infinite discrete line Z with
symbols on some alphabet Σ (with some patterns being forbidden).

Distortion is a group-theoretic notion that appears in many classical groups (Baumslag-Solitar groups,
the Heisenberg group…) whose embedding as subgroups of automorphism groups are still open problems.
For distortion-related works in the context of group theory, see [Gro93; CF06; GK11; LM18; GL19; CC20;
FH06; Pen20; Nav21]. In the context of automorphism groups of subshifts, distortion was proved to be an
obstacle to embeddings in some cases, see [CFKP18, Corollary 3.10].

The existence of distortion in automorphism groups of subshifts has been an open problem since at
least [KR90; CFKP18]. During this internship, we proved that distortion appears in some automorphism
groups, and obtained the following results, which we detail in Chapters 1 to 3:

• We study the behavior of the SMART machine [COT17] on finite cyclic tapes.
• (A slightly altered of) the SMART machine defines a distorted automorphism on some full-shift.
• As a corollary, sofic subshifts admit distorted automorphisms if and only if their entropy is non-zero.

While our results are stated in terms of automorphisms on subshifts, our proof methods rather belong
to the theories of dynamical Turing machines and reversible gates. For this reason, we split this work
in several chapters. Chapter 1 defines dynamical Turing machines, and studies the recursive behavior of
SMART machine from [COT17]. Chapter 2 uses results about permutations in the reversible gate model
to prove what we call the “finitary distortion of the SMART machine”. Finally, Chapter 3 contains all
our considerations on subshifts, their automorphism groups, distortion inside them, and a few interesting
corollaries.
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GENERAL INTRODUCTION

Group confluence
Completely independently, we also studied the influence of the geometry of a groupG on subshifts with

surface G, motivated by previous work I did with Benjamin Hellouin de Menibus [CH22, Proposition 25]
about aperiodicity in Zd subshifts. We had proved that, if the so-called “surface entropy” of a sofic subshift
X was infinite, then X must contain an aperiodic configuration. But this property was restricted to sofic
subshifts, and the general case was still escaping us a few months after the publication of the original
paper.

Ville Salo joined us in this study, and together we achieved the following, which we detail in Chapter 4:
• Any Zd subshift of infinite surface entropy must contain a (strongly) aperiodic configuration.
• We define the notion of group confluence, which is implicitly used in the proof of the first item. We
then prove the confluence of some classes of groups.

• It follows that subshifts with infinite surface entropy on such groups have aperiodic configurations.

Future prospects
Exhibiting a distortion element in an automorphism group naturally leads to more questions. Which

rates of distortion can exist, cannot? Can the Baumslag-Solitar groups embed in automorphism groups of
subshifts? What about the Heisenberg group? As our construction is quite convoluted, does there exist a
more natural example? For more details, see Section 3.6 – “open questions”.

In terms of group geometry and aperiodicity, our the definition of surface entropy with groups uses
arbitrary shapes for patterns, while on Zd it uses hypercubes: we would like to consider this gap before
we post any draft online. Of course, one obvious question would be: does the confluence property hold
for arbitrary torsion-free solvable groups? It very-well may be the case, but building groups by induction
won’t prove it. For more details, see Section 4.2.4 – “open questions”.

Meta-information
This internship was very enlightening. It was my first time as an expat, and being abroad for such a

long time – discovering new people and a new culture – was quite an experience!
Mathematically, when I asked Ville Salo to be my ARPE supervisor (following recommendations of my

future PhD advisor, Pascal Vanier), we picked this topic halfway between symbolic dynamics and group
theory: I was already a bit familiar with the former, since two of my previous internships were already
about computability considerations on subshifts; however, I was completely ignorant of group theory
above an undergraduate level, and I had some catching up to do1.

In October, we studied the finite behavior2 of the SMARTmachine and created the bijection that encodes
finite cyclic configurations into ternary numbers (Chapter 2). From November to the end December, we
focused on implementing our ideas in the reversible gate model, which was probably the most difficult part
of this internship. The ducking trick was our first breakthrough, which lead to the results of Lemma 2.1
in Chapter 2. Back in France during the winter break, I met with Benjamin Hellouin to once again fail to
generalize our conjecture about entropies and aperiodicities in Zd subshifts. Talking about these attempts
with Ville would later be useful.

Back in Finland, universities were closed frommid-January to mid-February and the Finnish winter was
rather cold and lonely. I remotely attended lectures about cellular automata and did some exercise sessions
for fun, but couldn’t bring myself to do research. At the end of February, universities reopened, and we
obtained our first example of a distortion element (in a very specific subshift). These results were included
in the midterm report I was writing at that time3, and implemented in Python.

1After a year of study, I realize that, of course, I still don’t know anything about group theory; but hopefully, I’m a little less
ignorant than before.

2We studied the behavior of finite cyclic tapes as we were convinced we could then move these results into a distortion element
in some full-shift.

3Since then, we ditched these results, as we generalized our construction to any non-trivial full-shift.
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GENERAL INTRODUCTION

During the last days of March, we came up with the two-scale trick, which lead in April to the key proof
of Chapter 3 and to exhibiting a distortion element in some full-shift (Lemma 3.9). From April to the end
of July, we compiled all of our findings in an article [CS22]: as the proofs were quite technical, we went
back and forth several times. This wasn’t my first time writing an article, but this one was probably the
hardest. In parallel, I mentioned back in May to Ville Salo our (failed) attempts with Benjamin Hellouin to
generalize [CH22, Proposition 25] about surface entropies; a few cups of coffee later, some emails bounced
back and forth, and we worked until the end of June to prove the group geometry results of Chapter 4.

I was in Caen for a seminar (visiting Pascal Vanier, my future PhD advisor) during a few days in June,
and then in Liège for the SDA2 meeting (the annual meeting of the French-speaking symbolic dynamics
community). I then presented my results about distortion at a seminar in Turku. Back in Turku from mid-
June to mid-July, the little time we had left was spent writing [CS22] (which took most of it), implementing
Chapter 2 in Python4, and of course doing some side-activities (saunas, biking, hiking…). After I left Turku,
we completed our draft, published it online and gathered some comments and discussions.

Acknowledgements
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Liisa and the people of the Finnish lectures; the students of Delta, who welcomed the non-Finnish speaker
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person I ever met, supporting every crazy last-minute plan and idea I could throw at her and suggesting
many others; andHervé, for the discussions, themovies, and the video gameswe played late at night11. You
have been amazing cooks, raclette-enjoyers, sushi-fanatics, series binge-watchers, co-players, co-hikers,
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4The code is not ready for publication, at it contains some bugs and has no documentation. I plan to clean this at some point in
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5Finnish salty licorice, presumably the “weird food” strangers have to try. But I quite liked them!
6Finnish desert in February, has an amazing taste.
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1
The SMART machine on cyclic tapes

In this report, a Turing machine is a dynamical system where a single head moves over an infinite
tape of arbitrary data (over a fixed finite alphabet), and all the action happens near the head (which may
move around the tape, such movement depending on the content of the tape; or modify said content). The
dynamics of Turing machines is an important branch of symbolic dynamics, initiated in [Kůr97], which
explicitly defined the moving-head and moving-tape dynamics of Turing machines (although dynamical
ideas appeared in the literature before, see [Hoo66; Rog75; Moo91]).

One of the most-studied behaviors of Turing machines is aperiodicity, meaning that the action of the
Turing machine has no periodic points. An aperiodic Turing machine was exhibited in [BCN02] (inspired
by techniques from [Hoo66]), and [KO08] found the first reversible aperiodic Turingmachines (ones whose
action is a homeomorphism). This culminated in the discovery of the SMART machine S [COT17], a
machine with only four states and three tape-letters, which is reversible and aperiodic, and whose moving-
tape dynamics is a minimal homeomorphism on the Cantor space (see also [Oll18]).

For the purpose of establishing distortion, the first important consideration is the “speed” of a Turing
machine: a Turing machine with linear movement, meaning the existence of tape contents such that the
head moves to infinity at a positive rate, could not possibly give rise to a distortion element. However, the
SMART machine S can only move by an offset of at most O(log t) in t steps of computation. This makes
S a perfect candidate for a distortion element, as conjectured in [GS17].

This chapter focuses on the dynamics of general considerations about the SMART machine. We under-
line the recursive aspects of its computations, and consider its action on finite cyclic tapes. As it contains
no consideration about subshifts, automorphisms or distortion, this chapter is somehow independent of
the rest of this report, even though Chapter 2 heavily relies on the encoding defined in Section 1.3.

1.1 Definitions

Let Q be a finite set called the state set, and Γ be a finite set called the tape alphabet. In the model1
of [KO08], a Turing machine is a tripleM = (Γ, Q,∆), where ∆ ⊆ (Q×{+1,−1}×Q)∪(Q×Γ×Q×Γ)
is the transition table. A transition (q, δ, q′) ∈ Q×{+1,−1}×Q is called amove transition, and a transition
(q, a, q′, b) ∈ Q× Γ×Q× Γ is called a matching transition.

1This model is equivalent to the usual definition of Turing machines, but handles reversibility better.

4



CHAPTER 1. THE SMART MACHINE ON CYCLIC TAPES

In this report, we focus on the action of Turing machines on two objects: bi-infinite tapes, and finite
cyclic tapes.

Bi-infinite tapes
On the alphabet Γ ∪ (Q× Γ), elements of Q× Γ are called heads. Denote

XQ,Γ = {x ∈ (Γ ∪ (Q× Γ))Z | ∀i, j ∈ Z : i 6= j =⇒ xi ∈ Γ ∨ xj ∈ Γ}

the set of bi-infinite tapes with at most one head somewhere. We can associate toM its so-called moving-
head model [Kůr97], i.e. the binary relation→M onXQ,Γ defined by x→M x if x ∈ ΓZ, and if xi = (q, ai)
for i ∈ Z, then x→M x′ if there exists t ∈ ∆ such that:

If t = (q, ai, q
′, b) ∈ ∆ : x′j =

{
(q′, b) if j = i

xj otherwise

If t = (q, δ, q′) ∈ ∆ : x′j =


ai if j = i

(q′, xi+δ) if j = i+ δ

xj otherwise

The machineM is deterministic if →M defines a partial function, complete deterministic if it defines
a total function (which is then continuous and, obviously, shift-commuting), and complete reversible (or
reversible for short) if it defines a bijection (which is then a homeomorphism). When M is complete
deterministic (which all our machines are), when using the relation →M as a function we write it as
TM : XQ,Γ 7→ XQ,Γ, which is an endomorphism of the subshiftXQ,Γ. Similarly, whenM is reversible, it
is an automorphism of XQ,Γ.

Finite cyclic tapes
The set of cyclic configurations of length ` is the setC`,Q,Γ = L`(XQ,Γ) of finite configurations containing

at most one head. ThenM defines a binary relation→M onC`,Q,Γ by considering these finite tapes cyclic,
i.e. we define x→M x if x ∈ Γ`, and if xi = (q, ai) for i ∈ J0, `− 1K, then x→M x′ if there exists t ∈ ∆
such that:

If t = (q, ai, q
′, b) ∈ ∆ : x′j =

{
(q′, b) if j = i

xj otherwise

If t = (q, δ, q′) ∈ ∆ : x′j =


ai if j = i

(q′, πΓ(xi+δ mod l)) if j = i+ δ mod `
xj otherwise

where πΓ : Γ t (Q× Γ) 7→ Γ is the natural projection. IfM is complete deterministic, the function→M
will be denoted by T`,M : C`,Q,Γ 7→ C`,Q,Γ. Note that it is an endomorphism of the shift action of Z (or
Z` which translates the cyclic tape around).

These conditions (determinism, completeness and reversibility) are characterized by obvious combinato-
rial properties. In particular,M = (Γ, Q,∆) is complete deterministic if and only if exactly one transition
applies at any time:

∀(q, a) ∈ (Q× Γ) : #{t ∈ ∆ | t = (q, a, ·, ·) or t = (q, ·, ·)} = 1.

Defining the reverse of a transition by (q, δ, q′)−1 = (q′,−δ, q) and (q, a, q′, b)−1 = (q′, b, q, a), this
reverse relation extends to transition tables with ∆−1 = {t−1 | t ∈ ∆}: the reverse ofM is then defined
byM−1 = (Γ, Q,∆−1), andM is reversible if bothM andM−1 are complete deterministic.

Finally, for any machineM = (Q,Γ,∆), denote m : N 7→ N its movement function, i.e. m(n) is the
maximal number of cells the machine can visit in n steps.

5



CHAPTER 1. THE SMART MACHINE ON CYCLIC TAPES

1.2 The SMART machine

1.2.1 Definition and recursive moves
Let SMART be the Turing machine (Q,Γ,∆), where Q = {I1,J1,B1,C1} ∪ {I2,J2,B2,C2}, Γ =
{0, 1, 2} and ∆ is the following transition table:

I2

I1 C2

C1

B1

B2

J2

J1

I

0|1

1|1
2|2

J

0|1

1|1
2|2

I

0|2
1|0

2|0

J

0|2
1|0

2|0

We refer to I1I2,J1,J2 (resp. B1,B2,C1,C2) as filled and hollow triangles.

Remark. The SMART machine was introduced with a slightly different formalism in [COT17], and slightly
revised in [Oll18] (states were renamed and permuted). The machine above adapts the latter in the model
of [KO08] for Turing machines: in other words, we duplicate the states. We kindly advise readers already
familiar with the SMART machine to read these definitions and propositions carefully.

Namely, while our SMART machine is in a sense completely equivalent, in the formulas in Proposition 1.1
describing traversals of SMART over zeroes, the patterns corresponding to filled and hollow initial states are
of the same length (unlike the corresponding ones in [COT17]). This will be helpful later, when we encode the
position in the sweep into the corresponding area on the tape without any extra space.

Proposition 1.1

(Adapted from [COT17, Lemma 1]) Let f(k) = 3k+1 − 2.
For all k ∈ N, s∗ ∈ {0, 1, 2} and s+ ∈ {1, 2}, the following moves hold:

MI(k) :
(

s+ 0k s∗
I2

)
`f(k)

(
s+ 0k s∗

I1

)
MJ(k) :

(
s∗ 0k s+

J2

)
`f(k)

(
s∗ 0k s+
J1

)
MB(k) :

(
s∗ 0k s+
B2

)
`f(k)

(
s∗ 0k s+

B1

)
MC(k) :

(
s+ 0k s∗

C2

)
`f(k)

(
s+ 0k s∗
C1

)
Additionally, the cell containing s∗ is only visited at the last (resp. first) step of the
sequences of transitionsMI andMJ (resp. MB andMC). And the cell containing s+
is never modified.

Proof. This proof adapts the proof of [COT17, Lemma 1], and highlights the recursive/nested aspects of
these moves. In the case k = 0 one can check that indeed the formula describes a single transition. We
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CHAPTER 1. THE SMART MACHINE ON CYCLIC TAPES

reason by induction, and assumeMI(k),MJ(k),MB(k) andMC(k) hold. We only proveMI(k+ 1) and
MB(k + 1), by symmetry between I and J (resp. B and C). Since f(k + 1) = 3f(k) + 4 we should find
3 recursions, and 4 extra steps. This is what happens:

MI(k + 1)(
s+ 0k 0 s∗
I2

)
Apply MI(k)

`f(k)
(

s+ 0k 0 s∗
I1

)
Apply one step

`
(

s+ 0k 1 s∗
J2

)
Apply MJ(k)

`f(k)
(

s+ 0k 1 s∗
J1

)
Apply one step

`
(

s+ 0k 1 s∗
B2

)
Apply MB(k)

`f(k)
(

s+ 0k 1 s∗
B1

)
Apply one step

`
(

s+ 0k 0 s∗
I2

)
Apply one step

`
(

s+ 0k 0 s∗
I1

)

MB(k + 1)(
s∗ 0 0k s+
B2

)
Apply one step

`
(

s∗ 0 0k s+
B1

)
Apply one step

`
(

s∗ 2 0k s+
I2

)
Apply MI(k)

`f(k)
(

s∗ 2 0k s+
I1

)
Apply one step

`
(

s∗ 2 0k s+
C2

)
Apply MC(k)

`f(k)
(

s∗ 2 0k s+
C1

)
Apply one step

`
(

s∗ 0 0k s+
B2

)
Apply MB(k)

`f(k)
(

s∗ 0 0k s+
B1

)

1.2.2 Action of SMART on cyclic tapes
This section studies the action of SMART on cyclic tapes of length ` ≥ 2. We call initial configurations

the four following cyclic configurations:

CI =
(0 0`−1

I1

)
CJ =

(0 0`−1

J1

)
CB =

(0 0`−1

B1

)
CC =

(0 0`−1

C1

)
Proposition 1.2

Let ` ≥ 1. The action of the (2 · 3`)-th power of SMART on CI and CB (resp. CJ and
CC) is a right-shift (resp. left-shift). Furthermore, the intermediate configurations are
all distinct.

Proof. By symmetries between I and J (resp. B and C), we prove the result for CI and CB.
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(0 0 0`−2

I1

)
Apply one step

`
(1 0 0`−2

J2

)
Apply MJ(` − 1)

`f(`−1)
(1 0 0`−2

J1

)
Apply one step

`
(1 0 0`−2

B2

)
Apply MB(` − 1)

`f(`−1)
(1 0 0`−2

B1

)
Apply one step

`
(0 0 0`−2

I2

)
Apply one step

`
(0 0 0`−2

I1

)

(0 0 0`−2

B1

)
Apply one step

`
(2 0 0`−2

I2

)
Apply MI(` − 1)

`f(`−1)
(2 0 0`−2

I1

)
Apply one step

`
(2 0 0`−2

C2

)
Apply MC(` − 1)

`f(`−1)
(2 0 0`−2

C1

)
Apply one step

`
(0 0 0`−2

B2

)
Apply one step

`
(0 0 0`−2

B1

)
We used movesMI(`− 1),MJ(`− 1),MB(`− 1) andMC(`− 1) in patterns that overlap themselves

on their first and last letters in the cyclic tape. This is valid, because the cell containing s∗ is only visited
at the last (resp. first) step ofMI andMJ (resp. MB andMC).
For the last claim, it is enough to show that the last (shifted) configuration does not appear before the

last step. This is clear from looking at the first columns, which have positive values on all but the first step
and the two last steps.

Lemma 1.3

For ` ≥ 1, the action of SMART on cyclic tapes of length ` is composed of four disjoint
cycles of length 2` · 3`, which are the orbits of the four initial configurations. Addi-
tionally, the action of the (2 · 3`)-th power of SMART on a cyclic tapes consists in a
right-shift (resp. left-shift) on the orbits of CI and CB (resp. CJ and CC).

Proof. By Proposition 1.2, the orbits of CI, CB, CJ and CC are each of length 2` · 3` (number of shifts ×
number of steps for each shift). As there are 8` · 3` different cyclic configurations containing a head (eight
different states with ` possible positions, and a ternary tape of length `), we now only need to prove that
the orbits of CI, CB, CJ and CC are disjoint.
For this, observe again that in the proof of Proposition 1.2, the positive ternary letter 1 or 2 are never

erased in the searches MI(` − 1), MJ(` − 1), MB(` − 1) and MB(` − 1). Considering the orbit of Cq

for some fixed q ∈ {I,J,B,C}, the word 0` appears only at the first or last step of this proof (or their
shifts): in particular, they are all in states either q1 or q2 (with this fixed q). This implies that these orbits
cannot intersect.

1.2.3 Analysis of SMART configurations

We now explain how, given a cyclic SMART configuration of length `, we determine which orbit it
belongs in and its position in this orbit, i.e. the number of steps required to obtain it from its corresponding
initial configuration CI, CJ, CB or CC.
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We say that a cyclic configuration is performing the j-th step of computation of MI(k) (resp. MJ(k),
MB(k), MC(k)), for 0 ≤ j ≤ f(k), if it contains the j-th pattern of the sequence of transitions MI(k)
(resp. …) of Proposition 1.1. At this point, it may not be clear that this is unique, but this will follow from
our argument.
If a configuration is performing some step of computation from one of themovesMI(k),MJ(k),MB(k)

orMC(k), we refer to this move as its computation of level k.

Initialization
We call the following patterns special patterns of level k ≥ 1:

s(I2, k) =
(

s+ 0k−1 0
I2

)
s(I1, k) =

(
s+ 0k s∗

I1

)
s(J2, k) =

(0 0k−1 s+
J2

)
s(J1, k) =

(
s∗ 0k s+
J1

)
s(B2, k) =

(
s∗ 0k s+
B2

)
s(B1, k) =

(0 0k−1 s+
B1

)
s(C2, k) =

(
s+ 0k s∗

C2

)
s(C1, k) =

(
s+ 0k−1 0

C1

)
By the proof of Proposition 1.1, we see that if a cyclic configuration contains a special pattern s(I2, k),

s(I1, k), s(J2, k) or s(J1, k) (resp. s(B2, k), s(B1, k), s(C2, k) or s(C1, k)), then it performs the last
two steps ofMI(k) orMJ(k) respectively (resp. the first two steps ofMB(k) orMC(k)).

Claim 1.4

Given a cyclic configuration c of length ` containing a head, exactly one of the following
holds:

• c is on the full-zero word 0`.
• c performs some step of computation of level 0 from either MI(0), MJ(0),
MB(0) orMC(0).

• there exists some unique 1 ≤ k ≤ `− 1 such that c either performs the last two
steps ofMI(k) orMJ(k), or the first two steps ofMB(k) orMC(k).

Proof. The patterns ofMI(0),MJ(0),MB(0) andMC(0) (eight in total), along with the special patterns
of every level, disjointly cover all the non-zero configurations with a head.

Inductive analysis: k 7→ k + 1 ≤ `− 1
Assume a cyclic configuration of length ` is performing some computation of level k, for k < ` − 1.

Then it performs some computation of level k + 1, and Figure 1.1 details a case-analysis to figure out
which computation it performs out ofMI(k + 1),MJ(k + 1),MB(k + 1) orMC(k + 1). (This analysis
also implies that the computation step performed at a particular level is unique, if one exists.)

Conclusion:
This proves that every cyclic configuration of length ` is either on the full zero word, or performs the j-th

step of computation of a move of level `− 1 for some 0 ≤ j ≤ f(`− 1). With the proof of Proposition 1.2,
we then conclude whether the input configuration belongs in the orbit of CI, CJ, CB or CC, and its
position in this orbit.
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MI(k) is performed in:

MI(k + 1) (at step 0):
(

s+ 0k 0 s∗
I2

)
`∗

(
s+ 0k 0 s∗

I1

)
MJ(k + 1) (at step f(k) + 1):

(
s∗ 1 0k s+

I2

)
`∗

(
s∗ 1 0k s+

I1

)
MB(k + 1) (at step 2):

(
s∗ 2 0k s+

I2

)
`∗

(
s∗ 2 0k s+

I1

)
MJ(k) is performed in:

MJ(k + 1) (at step 0):
(

s∗ 0 0k s+
J2

)
`∗

(
s∗ 0 0k s+

J1

)
MI(k + 1) (at step f(k) + 1):

(
s+ 0k 1 s∗

J2

)
`∗

(
s+ 0k 1 s∗
J1

)
MC(k + 1) (at step 2):

(
s+ 0k 2 s∗

J2

)
`∗

(
s+ 0k 2 s∗
J2

)
MB(k) is performed in:

MB(k + 1) (at step 2f(k) + 4):
(

s∗ 0 0k s+
B2

)
`∗

(
s∗ 0 0k s+

B1

)
MI(k + 1) (at step 2f(k) + 2):

(
s+ 0k 1 s∗
B2

)
`∗

(
s+ 0k 1 s∗

B1

)
MC(k + 1) (at step f(k) + 3):

(
s+ 0k 2 s∗
B2

)
`∗

(
s+ 0k 2 s∗

B1

)
MC(k) is performed in:

MC(k + 1) (at step 2f(k) + 4):
(

s+ 0k 0 s∗
C2

)
`∗

(
s+ 0k 0 s∗
C1

)
MJ(k + 1) (at step 2f(k) + 2):

(
s∗ 1 0k s+

C2

)
`∗

(
s∗ 1 0k s+

C1

)
MB(k + 1) (at step f(k) + 3):

(
s∗ 2 0k s+

C2

)
`∗

(
s∗ 2 0k s+

C1

)

Figure 1.1: Bottom-up analysis of SMART configurations: k 7→ k + 1

Wewrite configurations performing sub-computations (of level k) of computations of level k+1.
We darken the part of the configuration performing the sub-computation of level k. Circled
ternary bits are not modified by the sub-computations of level k, and can be used to perform a
case-analysis.
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1.3 Encoding cyclic tapes into their orbit positions in C`,Q,Γ

Remark. In this section, we work with the SMART machine introduced above; this will define encodings for
the decorated machine (introduced below) by simply carrying the decorations in the state, unmodified.

DenoteS the SMARTmachine introduced above. We define Φ : C`,Q,Γ 7→ C`,Q,Γ the following bijection:

Φ (Sn(Cq)) =



(q1, w1) · w2 . . . w`,
if n < 3`, for w = n(3)

and q ∈ {I,J,B,C}

(q2, w1) · w2 . . . wl,
if 3` ≤ n < 2 · 3l, for w = [n− 3`](3)

and q ∈ {I,J,B,C}
σ−j

(
Φ
(
Sn′(Cq)

))
where q ∈ {I,B}, 2j · 3` + n′ = n

σj
(
Φ
(
Sn′(Cq)

))
where q ∈ {J,C}, 2j · 3` + n′ = n

In other words, given as input a configuration Sn(Cq) of length `, for some q ∈ {I,J,B,C}, Φ encodes
the tuple (q, n) in base 4 · (2` ·3`): the head has state ranging in q1 or q2 for q ∈ {I,J,B,C}, the position
of the head ranges from 0 to `− 1, and the ternary counter of length ` ranges from 0 to 3` − 1. Note that
this bijection is shift-commuting, because on each tape Cq , applying SMART 2 · 3` times performs a shift
map (in the same direction as we do in the above formula).

Inductive encoding
In this section, we use the analysis performed in Section 1.2.3 to provide a linear-time algorithm that

breaks this complicated bijection into smaller and easier steps, which we then “implement” in Section 2.2
in some finitely generated group of permutations.
Let c be a cyclic configuration of length ` of SMART, and k ≤ `− 1. If c is not special of level > k or on

the full zero word, there exists some q ∈ {I,J,B,C} and some unique word w(k) of length k + 2 such
that w(k) v c and w(k) computes the j-th step ofMq(k), for some 0 ≤ j ≤ f(k). For such k, we define
the encoding of level k of c by replacing the occurrence of w(k) in c by the word w′(k) defined by:

If q = I: w′(k) = c0 . . . ck · (q′, w(k)k+1), where c ∈ {0, 1, 2}k+1 is a ternary counter with v3(c) = j + 1,
and q′ = I1 if w(k)0 = 1 (resp. q′ = I2 if w(k)0 = 2).

If q = J: w′(k) = (q′, w(k)0) · c0 . . . ck, where c ∈ {0, 1, 2}k+1 is a ternary counter with v3(c) = j + 1, and
q′ = J1 if w(k)k+1 = 1 (resp. q′ = J2 if w(k)k+1 = 2).

If q = B: w′(k) = (q′, w(k)0) · c0 . . . ck, where c ∈ {0, 1, 2}k+1 is a ternary counter with v3(c) = j + 1, and
q′ = B1 if w(k)k+1 = 1 (resp. q′ = B2 if w(k)k+1 = 2).

If q = C: w′(k) = c0 . . . ck · (q′, w(n)k+1), where c ∈ {0, 1, 2}k+1 is a ternary counter with v3(c) = j + 1,
and q′ = C1 if w(k)0 = 1 (resp. q′ = C2 if w(k)0 = 2).

Words with an all-zero counter value, i.e. (0k+1 · (I1, wk+1)), (0k+1 · (I2, wk+1)), ((J1, w0) · 0k+1),
((C1, w0)·0k+1) are not used in this encoding. Conveniently, they are exactly the special patterns of levels
strictly greater than k.

Once we have specified the encodings at each level, we can define a sequence of transformations implic-
itly, by simply saying that we decode the level-k encoding and recode it on level k + 1; composing these
for all values of k, we get the encoding of level `, which one may easily check is simply Φ. In Figures 1.2,
1.3, 1.4 and 1.5, we perform the somewhat tedious exercise of describing these transformations in detail, as
we need to know the form of these transformations in order to implement them with permutations later.
Not surprisingly, it turns out that they require only ternary addition and basic rewriting of symbols.
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Special I1 higher level:
(0 s∗

I1

)
7→

(0 s∗
I1

)
Special I2 higher level:

(0 s∗
I2

)
7→

(0 s∗
I2

)
MI(0) :

(1 s∗
I2

)
7→

(1 s∗
I1

)
(2 s∗
I2

)
7→

(1 s∗
I2

)
(1 s∗

I1

)
7→

(2 s∗
I1

)
(2 s∗

I1

)
7→

(2 s∗
I2

)
Special J1 higher level:

(
s∗ 0
J1

)
7→

(
s∗ 0
J1

)
Special J2 higher level:

(
s∗ 0

J2

)
7→

(
s∗ 0
J2

)
MJ(0) :

(
s∗ 1

J2

)
7→

(
s∗ 1
J1

)
(

s∗ 2
J2

)
7→

(
s∗ 1
J2

)
(

s∗ 1
J1

)
7→

(
s∗ 2
J1

)
(

s∗ 2
J1

)
7→

(
s∗ 2
J2

)
Special B1 higher level:

(
s∗ 0

B1

)
7→

(
s∗ 0
B1

)
Special B2 higher level:

(
s∗ 0
B2

)
7→

(
s∗ 0
B2

)
MB(0) :

(
s∗ 1
B2

)
7→

(
s∗ 1
B1

)
(

s∗ 2
B2

)
7→

(
s∗ 1
B2

)
(

s∗ 1
B1

)
7→

(
s∗ 2
B1

)
(

s∗ 2
B1

)
7→

(
s∗ 2
B2

)
Special C1 higher level:

(0 s∗
C1

)
7→

(0 s∗
C1

)
Special C2 higher level:

(0 s∗
C2

)
7→

(0 s∗
C2

)
MC(0) :

(1 s∗
C2

)
7→

(1 s∗
C1

)
(2 s∗

C2

)
7→

(1 s∗
C2

)
(1 s∗
C1

)
7→

(2 s∗
C1

)
(2 s∗
C1

)
7→

(2 s∗
C2

)

Figure 1.2: Encoding SMART configurations: Φinit : c 7→ c0

From a cyclic SMART configuration, compute its encoding of level 0. Rewriting words of length
2.
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FromMI(k) to (k + 1)-level encoding:

MI(k + 1)(if v3(c) 6= 0) :
( ∗ c 0 ∗

I1

)
→

( ∗ 0 c ∗
I1

)
( ∗ c 0 ∗

I2

)
→

( ∗ 0 c ∗
I2

)
MJ(k + 1)(if v3(c) 6= 0) :

( ∗ c 1 ∗
I1

)
→

( ∗ [v3(c) + f(k) + 1](3)∗
J1

)
( ∗ c 2 ∗

I1

)
→

( ∗ [v3(c) + f(k) + 1](3)∗
J2

)
MB(k + 1)(if v3(c) 6= 0) :

( ∗ c 1 ∗
I2

)
→

( ∗ [v3(c) + 2](3) ∗
B1

)
( ∗ c 2 ∗

I2

)
→

( ∗ [v3(c) + 2](3) ∗
B2

)
FromMJ(k) to (k + 1)-level encoding:

MJ(k + 1)(if v3(c) 6= 0) :
( ∗ 0 c ∗

J1

)
→

( ∗ 0 c ∗
J1

)
( ∗ 0 c ∗

J2

)
→

( ∗ 0 c ∗
J2

)
MI(k + 1)(if v3(c) 6= 0) :

( ∗ 1 c ∗
J1

)
→

( ∗ [v3(c) + f(k) + 1](3)∗
I1

)
( ∗ 2 c ∗

J1

)
→

( ∗ [v3(c) + f(k) + 1](3)∗
I2

)
MC(k + 1)(if v3(c) 6= 0) :

( ∗ 1 c ∗
J2

)
→

( ∗ [v3(c) + 2](3) ∗
C1

)
( ∗ 2 c ∗

J2

)
→

( ∗ [v3(c) + 2](3) ∗
C2

)
FromMB(k) to (k + 1)-level encoding:

MB(k + 1)(if v3(c) 6= 0) :
( ∗ 0 c ∗

B1

)
→

( ∗ [v3(c) + 2f(k) + 4](3)∗
B1

)
( ∗ 0 c ∗

B2

)
→

( ∗ [v3(c) + 2f(k) + 4](3)∗
B2

)
MI(k + 1)(if 0 c 6= 0) :

( ∗ 1 c ∗
B1

)
→

( ∗ [v3(c) + 2f(k) + 2](3)∗
I1

)
( ∗ 2 c ∗

B1

)
→

( ∗ [v3(c) + 2f(k) + 2](3)∗
I2

)
MC(k + 1)(if v3(c) 6= 0) :

( ∗ 1 c ∗
B2

)
→

( ∗ [v3(c) + f(k) + 3](3)∗
C1

)
( ∗ 2 c ∗

B2

)
→

( ∗ [v3(c) + f(k) + 3](3)∗
C2

)
FromMC(k) to (k + 1)-level encoding:

MC(k + 1)(if v3(c) 6= 0) :
( ∗ c 0 ∗

C1

)
→

( ∗ [v3(c) + 2f(k) + 4](3)∗
C1

)
( ∗ c 0 ∗

C2

)
→

( ∗ [v3(c) + 2f(k) + 4](3)∗
C2

)
MJ(k + 1)(if v3(c) 6= 0) :

( ∗ c 1 ∗
C1

)
→

( ∗ [v3(c) + 2f(k) + 2](3)∗
J1

)
( ∗ c 2 ∗

C1

)
→

( ∗ [v3(c) + 2f(k) + 2](3)∗
J2

)
MB(k + 1)(if v3(c) 6= 0) :

( ∗ c 1 ∗
C2

)
→

( ∗ [v3(c) + f(k) + 3](3)∗
B1

)
( ∗ c 2 ∗

C2

)
→

( ∗ [v3(c) + f(k) + 3](3)∗
B2

)

Figure 1.3: Encoding SMART configurations: Φk 7→k+1 (Part 1: k 7→ k + 1)

From an encoding of level k of a configuration, compute its (k + 1)-encoding, following Figure 1.1. Cells
with ∗ are unmodified, their point is to describe the head movement. We are rewriting words of length k + 4
(including the two gray symbols). Note that at k+ 1 = `− 2 (resp. k+ 1 = `− 1), the ∗-cells overlap or each
other (resp. the counter), because we reach the length of the cyclic tape.
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Encoding specialMI(k + 1):

Special I1 :
(

∗ 1 0k+1 ∗
I1

)
→

(∗ [f(k + 1) + 1](3) ∗
I1

)
(

∗ 2 0k+1 ∗
I1

)
→

(∗ [f(k + 1) + 1](3) ∗
I2

)
Special I2 :

(
∗ 1 0k+1 ∗

I2

)
→

(∗ [f(k + 1)](3) ∗
I1

)
(

∗ 2 0k+1 ∗
I2

)
→

(∗ [f(k + 1)](3) ∗
I2

)
Special I1 higher level :

(
∗ 0 0k+1 ∗

I1

)
7→

(
∗ 0k+2 ∗

I1

)
Special I2 higher level :

(
∗ 0 0k+1 ∗

I2

)
7→

(
∗ 0k+2 ∗

I2

)
Encoding specialMJ(k + 1):

Special J1 :
(

∗ 0k+1 1 ∗
J1

)
→

(∗ [f(k + 1) + 1](3) ∗
J1

)
(

∗ 0k+1 2 ∗
J1

)
→

(∗ [f(k + 1) + 1](3) ∗
J2

)
Special J2 :

(
∗ 0k+1 1 ∗
J2

)
→

(∗ [f(k + 1)](3) ∗
J1

)
(

∗ 0k+1 2 ∗
J2

)
→

(∗ [f(k + 1)](3) ∗
J2

)
Special J1 higher level :

(
∗ 0k+1 0 ∗
J1

)
7→

(
∗ 0k+2 ∗
J1

)
Special J2 higher level :

(
∗ 0k+1 0 ∗
J2

)
7→

(
∗ 0k+2 ∗
J2

)
Encoding specialMB(k + 1):

Special B1 :
(

∗ 0k+1 1 ∗
B1

)
→

(∗ [2](3) ∗
B1

)
(

∗ 0k+1 2 ∗
B1

)
→

(∗ [2](3) ∗
B2

)
Special B2 :

(
∗ 0k+1 1 ∗
B2

)
→

(∗ [1](3) ∗
B1

)
(

∗ 0k+1 2 ∗
B2

)
→

(∗ [1](3) ∗
B2

)
Special B1 higher level :

(
∗ 0k+1 0 ∗
B1

)
7→

(
∗ 0k+2 ∗
B1

)
Special B1 higher level :

(
∗ 0k+1 0 ∗
B2

)
7→

(
∗ 0k+2 ∗
B2

)
Encoding specialMC(k + 1):

Special C1 :
(

∗ 1 0k+1 ∗
C1

)
→

(∗ [2](3) ∗
C1

)
(

∗ 2 0k+1 ∗
C1

)
→

(∗ [2](3) ∗
C2

)
Special C2 :

(
∗ 1 0k+1 ∗

C2

)
→

(∗ [1](3) ∗
C1

)
(

∗ 2 0k+1 ∗
C2

)
→

(∗ [1](3) ∗
C2

)
Special C1 higher level :

(
∗ 0 0k+1 ∗

C1

)
7→

(
∗ 0k+2 ∗

C1

)
Special C2 higher level :

(
∗ 0 0k+1 ∗

C2

)
7→

(
∗ 0k+2 ∗

C2

)

Figure 1.4: Encoding SMART configurations: Φk 7→k+1 (Part 2: special 7→ k + 1)

Encode the special configurations of level k + 1 into their (k + 1)-encodings (see the proof of Proposition 1.1
for their correct orbit positions), and preserve the special configurations of level > k + 1. Rewriting words of
length k + 4.

14
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(0 0`−2 0
I1

)
→

(0 0`−2 0
I1

)
(0 0`−2 0

I2

)
→

(2 2`−2 2
I2

)
(

c0 · · · c`−1
I1

)
→

(
c
J1

)
(

c0 · · · c`−1
I2

)
→

(
c
B1

)
(0 0`−2 0
J1

)
→

(0 0`−2 0
J1

)
(0 0`−2 0

J2

)
→

(2 2`−2 2
J2

)
(

c`−1 c0 · · · c`−2
J1

)
→

(
c
I1

)
(

c`−1 c0 · · · c`−2
J2

)
→

(
c
C1

)
(0 0`−2 0

B1

)
→

(0 0`−2 0
B1

)
(0 0`−2 0
B2

)
→

(2 2`−2 2
B2

)
(

c`−1 c0 · · · c`−2
B1

)
→

([v3(c) − 1](3)
I2

)
(

c`−1 c0 · · · c`−2
B2

)
→

([v3(c) − 1](3)
C2

)
(0 0`−2 0

C1

)
→

(0 0`−2 0
C1

)
(0 0`−2 0
C2

)
→

(2 2`−2 2
C2

)
(

c0 · · · c`−1
C1

)
→

([v3(c) − 1](3)
J2

)
(

c0 · · · c`−1
C2

)
→

([v3(c) − 1](3)
B2

)

Figure 1.5: Final encoding step of SMART configurations: Φ`,final : c`−1 7→ c∗

This transformation refers directly to the proof of Proposition 1.2, and maps encodings of level ` − 1 to their
positions in the orbits ofCq for q ∈ {I,J,B,C}. It also “corrects” the position the head and shifts the counter
in the encodings ofMJ(`− 1) andMB(`− 1), and shifts heads in full-zero configurations whose heads were
moved during the encoding of level 0. Rewriting words of length `.
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CHAPTER 1. THE SMART MACHINE ON CYCLIC TAPES

Define Φinit the bijective transformation given in Figure 1.2, Φk 7→k+1 the bijective transformation of
Figures 1.3 and 1.4, and Φ`,final the bijection of Figure 1.5. Given a cyclic configuration c of length `,
denote c0 = Φinit(c) its encoding of level 0, ck+1 = Φk 7→k+1(ck) for k ≤ `− 2, and c∗ = Φ`,final(c`−1).

Lemma 1.5

Let c be a cyclic configuration of length `. Then c∗ = Φ(c).

Proof. By induction, one sees from Figure 1.1 that ck is the encoding of level k of c, for k ≤ ` − 1. We
then conclude that c∗ = Φ(c) by the proof of Proposition 1.2 by comparing the formulas, and recalling the
structure of the orbits of CI, CJ, CB, CC (to check that we shift in the correct direction when the counter
overflows).

16



2
Finitary distortion of the SMART machine

This chapter introduces a slightly altered version ofT`,S (called the decorated SMART ) acting on the cyclic
tapes of some C`,Qdec,Γ, and establishes Lemma 2.1: this automorphism is “distorted” in some finitely-
generated group G`,Qdec,Γ, in the sense that all its powers (including ones exponential in `) have word
norm polynomial in ` under the fixed generators (which is exponentially lower than the order of the
group would suggest).

Section 2.1 introduces some context and states Lemma 2.1: T`,Sdec
is finitary distorted. In particular, it

introduces the finitely generated groups G`,Q,Γ, which contains all Turing machines with states Q and
tape-letters Γ. Using ideas from the study of reversible gates1, it is not difficult to see that every even
tape-permutation of Γ` (relatively to the position of the head) belongs inG`,Q,Γ. However, as the diameter
of the alternating group in G`,Q,Γ is superlinear in `, we cannot conclude that every power of T`,S has
small word norm directly on these abstract grounds.
Section 2.2 proves Lemma 2.3 (which is essentially Barrington’s theorem [Bar89]) and some applications:

it is possible to condition permutations of the head by the remaining `−1 tape-symbols, i.e. apply the per-
mutation only if some condition holds on the `−1 tape-letters to its right. Furthermore, this is efficient: if
the condition deals with `−1 bits and belongs in the complexity class NC1, i.e. it admits an efficient imple-
mentation (logarithmic depth in `) by classical gates, then the word norm of the corresponding conditional
permutation will be polynomial in `.
Section 2.3 implements the encoding of Section 1.3 in someG`,Qdec,Γ. This essentially proves Lemma 2.1:

indeed, this conjugates the application of (T`,Sdec)n to adding the number n to a counter of length `, and
we are left with performing such additions in polynomially many steps in ` in Lemma 2.10.

2.1 Context and statement of Lemma 2.1

2.1.1 Finitely generated group G`,Q,Γ

Recall that C`,Q,Γ is the set of finite cyclic tapes of length ` (see Section 1.1), with states Q and tape-
alphabet Γ, containing at most one head (i.e. a letter in Q× Γ).

1In this report, reversible gates are permutations acting on (a sublanguage of) some An that only touch one subset of coordinates
at a time, where A is a finite alphabet. See [Sal22, Section 3.3] for more details about reversible permutations, and the result
that gates with two inputs are sufficient to generate all the even permutations.
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CHAPTER 2. FINITARY DISTORTION OF THE SMART MACHINE

LetG`,Q,Γ be the finitely generated subgroup of Sym(C`,Q,Γ) generated by state-dependent moves, and
the unary gates permuting the contents of cells containing heads. Formally, for g ∈ Sym(Q × Γ), define
the unary gate πg ∈ Sym(C`,Q,Γ) as

πg(w)j =
{
wj if wj ∈ Γ
g(wj) if wj ∈ (Q× Γ)

and for q ∈ Q the state-dependent (right) move ρq ∈ Sym(C`,Q,Γ) as:

ρq(w)j =


πΓ(wj) if wj−1 mod ` /∈ ({q} × Γ) ∧ wj /∈ ((Q \ {q})× Γ)
wj if wj ∈ ((Q \ {q})× Γ)
(q, πΓ(wj)) if wj−1 mod ` ∈ ({q} × Γ)

Then we define:
G`,Q,Γ = 〈{πg : g ∈ Sym(Q× Γ)} ∪ {ρq | q ∈ Q}〉

We can see the group G`,Q,Γ as the group generated by the instructions of Turing-machines: moving
heads based on their states, or permuting their values. To ease notations, we denote

∏
q∈Q ρq by ρ.

It is easy to see that for any reversible Turing machineM, T`,M is an element of G`,Q,Γ. Indeed, a step
of computation is the composition of a head permutation α ofQ×Γ, followed with state-dependent moves
β+1 and β−1:

α(q, a) =
{

(q′, b) if (q, a, q′, b) ∈ ∆
(q′, a) if (q,±1, q′) ∈ ∆

β+1 =
∏

q′|∃q,(q,+1,q′)∈∆
ρq′

β−1 =
∏

q′|∃q,(q,−1,q′)∈∆
ρq′
−1

We denote by δ(`, n) the word norm of (T`,M)n in G`,Q,Γ.

Remark. It can be shown that G`,Q,Γ is, for large enough `, |Q| and |Γ| (in particular for all versions of the
SMART machine we consider and for ` ≥ 2), of finite index in the automorphism group of C`,Q,Γ under the
shift action of Zn. This is not particularly useful, however, as what we need it for is to provide a group where
the SMART machine corresponds to an element of small radius (far smaller than the radius of the group).

2.1.2 Decorated SMART machine
Let S = (Q,Γ,∆) be the SMART machine (see Section 1.2). Define the decorated version of the SMART

machine as Sdec = (Qdec,Γ,∆dec), with

Qdec = Q×D ×G

∆dec =
⋃

(d,x)∈D×G

{(
(q, d, x), a, (q′, d, x), b

)
: (q, a, q′, b) ∈ ∆

}
∪

⋃
(d,x)∈D×G

{(
(q, d, x), δ, (q′, d, x)

)
: (q, δ, q′) ∈ ∆

}

for D = {d1, d2} and G = J0, 5K × Γ, i.e. the states of Qdec now carry a state q ∈ Q of the original
machine S , a special symbol d ∈ D called the duck, and a ghost symbol x ∈ G. We have |Qdec| = 288.
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The decorated SMART machine Sdec behaves exactly like S , in the sense that it ignores the new deco-
rations. While the duck component D and ghost component G are completely ignored, they will be used
by the generators we use to build powers of the machine efficiently. The point of the hex component J0, 5K
in the ghost is to allow us to condition the application of gates, and to build the permutations we perform
in Section 2.2. The transport component Γ in the ghost allows us to carry letters around. The duck will be
important during intermediate steps of computation in Section 2.2, in order to realize piecewise defined
functions.

2.1.3 Main result: Lemma 2.1
Recall thatm : N 7→ N is the movement function, i.e.m(n) is the maximal number of cells the machine

Sdec can visit in n steps; and that δ(`, n) is the word norm of (T`,Sdec)n in G`,Qdec,Γ.

Lemma 2.1

Let Sdec be the decorated version of SMART introduced above:
1. TSdec has infinite order.
2. There exist some C,C ′ > 0 such thatm(n) ≤ C logn+ C ′.
3. There exists some d > 0 such that δ(`, n) = O(`d).

In fact, for Sdec, we can take C = ln(2)/ ln(3) and d = 4.

Any finite orderT satisfies the latter two items, and any non-trivial state-dependent shift satisfies the first
and the third items. Achieving the first two items is already difficult, and to our knowledge these properties
have only been explicitly shown for the SMART machine and the binary SMART machine [CT20]. We
expect that the Kari-Ollinger construction in [KO08] can be used to produce more examples of machines
satisfying these two properties (at leastm(n) = O(n/ logn) follows from general principles for all these
machines [GS17]).

The second item is proved with the following computation: after less than 18 steps, the head of SMART
is in state B1 or C1 reading a 0 (ignoring the ghost and the duck). Then SMART is either at the left (for
B1) or right (for C1) extremity of some word 0m for some m ≥ log3(k) + 2, or by [COT17, Lemma 4] it
builds around this position some pattern in the setCm form ≥ log3(k)+2 (with the notations of [COT17,
Lemma 4]). Either way, after this point, k steps of computations cannot readmore than log3(k)+2 different
cells. We omit a detailed proof, as the logarithmic speed of SMART is well known.
The proof of the third item is a matter of programming powers of the machine efficiently with primitive

reversible operations. The cyclic configurations acted on by SMART form four disjoint cycles, and the
overall idea is to turn a configuration into a direct encoding of its position in the cycle (in ternary notation),
using the formulas from Section 1.3. This reduces computing powers of SMART to performing ternary
additions. The two following sections are dedicated to the proof of this third item.
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2.2 Permutation engineering in C`,Qdec,Γ

Let g ∈ Sym(Qdec×Γ) be a permutation, andC ⊆ (Qdec×Γ)×Γ`−1 a subset called a condition. Define
πg,C : C`,Qdec,Γ 7→ C`,Qdec,Γ as πg,C(w) = w if there is no head in w, and if wi ∈ Qdec × Γ, then:

πg,C(w)j =


wj if j 6= i

g(wj) if j = i and wj · wj+1 . . . wn−1 · w0 . . . wj−1 ∈ C
wj if j = i and wj · wj+1 . . . wn−1 · w0 . . . wj−1 /∈ C

We call πg,C the conditional application of g under condition C .
We sayC is g-invariant ifwj . . . wn−1·w0 . . . wj−1 ∈ C if and only if g(wj)·wj+1 . . . wn−1·w0 . . . wj−1 ∈

C . If C is g-invariant, then πg,C is a bijection. We say that C is ghost-invariant if there exists C ′ ⊆ ((Q×
D)×Γ)×Γ`−1 such thatC = π−1(C ′) where π : ((Q×D×G)×Γ)×Γ`−1 → ((Q×D)×Γ)×Γ`−1 is the
natural projection. Equivalently, it is g-invariant for all permutations g ∈ Sym(G), seen as permutations
of the G-component of the head.
We say that a head-permutation g ∈ Sym(Qdec×Γ) is ghost-ignorant if it factors through the projection

that forgets the ghost symbol. In other words, for any choice of h ∈ Qdec×Γ, w and g(w) carry the same
ghost symbol ifw has the state-symbol pair h at the head position, and furthermore the ghost symbol does
not affect how the other symbols change.

2.2.1 Permutation conditioning

Wenowprove that if g ∈ Alt(Qdec×Γ) is ghost-ignorant andC is a condition that is both ghost-ignorant
and g-invariant, then πg,C ∈ G`,Qdec,Γ. We also provide upper bounds on its word norm depending on C .
We begin with what is essentially Barrington’s theorem [Bar89].
As a first step, we consider permutations that are the opposite of ghost-ignorant, i.e. only touch the ghost-

component G of the head. Let g ∈ Alt(G), considered as a subgroup of Alt(Qdec × Γ) only permuting
the ghost-information in Qdec, and C a ghost-ignorant subset of (Qdec × Γ)× Γ`−1. Then note that πg,C

belongs in G`,Qdec,Γ.

Lemma 2.2

Denote T : GI → N be the optimal function such that ‖πg,C‖ ≤ T (C) for all g ∈
Alt(G) (considered as a subgroup of Sym(Qdec×Γ)), whereGI ⊂ P((Qdec×Γ)×Γ`−1)
is the set of all ghost-invariant sets. Then T satisfies the following inequalities:

T ([a]j) ≤ |min(j, `− j)|

T (C ∩ C ′) ≤ 2
(
T (C) + T (C ′)

)
T (C ∪ C ′) ≤

T (C) + T (C ′) if C ∩ C ′ = ∅
2
(
T (C) + T (C ′)

)
+ 5 otherwise

T (Cc) ≤ T (C) + 1

Proof. We prove by induction over C that every πg,C , for g ∈ Alt(G) (considered as a subgroup of
Sym(Qdec × Γ)), has word norm that checks the aforementioned inequalities.

Case 1. If C = C ′ × Γ`−1 for some C ′ ⊆ (Q×D ×G) that is ghost-invariant, then any such πg,C already
appears in the set of generators of G`,Qdec,Γ.
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Case 2. If C = [x]j for some j ∈ J−`, `K, j 6= 0 and x ∈ Γ, define C ′′ = (Q × D × G) × {x} and
C ′ = C ′′ × Γ`−1. Then one can conjugate πg,C′ (which belongs to G`,Qdec,Γ by the first item) with
ρj : the resulting permutation applies g on the ghost symbol if and only if j cells away from the head,
the content of the tape is x.

Case 3. If C = Cc
1, then πg,Cc

1
= πg−1,C1 ◦ πg .

Case 4. If C = C1 ∩ C2. We use the “commutator trick”. As G has cardinality greater than 5, g is a
commutator by Ore’s theorem [Ore51, Theorem 7]: there exist g1, g2 such that g = [g1, g2]. By
the induction hypothesis and a straightforward calculation, we conclude that:

πg,C1∩C2 =
[
πg1,C1 , πg2,C2

]
Case 5. If C = C1 ∪ C2, with C1 ∩ C2 = ∅. Then πg,C1∪C2 = πg,C1 ◦ πg,C2 .

Case 6. If C = C1 ∪ C2, then πg,C1∪C2 = πg,(C1c∩C2c)c .

We conclude that πg,C ∈ G`,Qdec,Γ, and that the provided upper-bounds are correct.

Note that any ghost-ignorant permutation g ∈ Sym(Qdec×Γ) is even since |G| is. Combining this with
the previous lemma, we obtain:

Lemma 2.3

Let T : (Qdec × Γ) × Γ`−1 7→ N be given by the previous lemma. For any ghost-
ignorant permutation g ∈ Sym(Qdec × Γ), and any ghost- and g-invariant condition
C ⊆ (Qdec × Γ) × Γ`−1, the permutation πg,C belongs to G`,Qdec,Γ with word norm
O(T (C)).

Proof. Consider G = J0, 5K× Γ as G = {0, 1} ×G′, for G′ = {0, 1, 2} × Γ. As a remark, the structure of
G′ has no importance in this proof and the reader can consider G′ as a black box – in particular Γ never
refers to the transport Γ-component of G′ in what follows, but instead to a tape letter. For the rest of the
proof, fix C some ghost-invariant condition.

Define H ′′ = (Q × D) × Γ and H ′ = (Q × D × {0, 1}) × Γ, considered as projections of H =
(Q ×D × {0, 1} × G′) × Γ = Qdec × Γ. Then any permutation g′′ ∈ Sym(H ′′) lifts into a permutation
g′ = χ(g′′) ∈ Sym(H ′) (by ignoring the bit), and any g′ ∈ Sym(H ′) lifts into a permutation g = ξ(g′) ∈
Sym(H) (by ignoring G′). We first prove that the ghost-ignorant permutations g ∈ Sym(H) such that
C is g-invariant are generated by the ξ(σ′) ∈ Sym(H), for σ′ the 3-cycles of Sym(H ′) such that C is
ξ(σ′)-invariant.
For any ghost-ignorant g ∈ Sym(H), there exists some g′′ ∈ Sym(H ′′) such that g = ξ(χ(g′′)). Ad-

ditionally, g′′ ∈ Sym(H ′′) decomposes into a product of cycles of disjoint support. Without any loss of
generality, we can assume that g′′ is a cycle of support S′′ ⊆ H ′′. So g′′ can be considered as a permutation
of Sym(S′′). Then g′′ lifts into a permutation g′ = χ(g′′) ∈ Alt(H ′) that can be considered as a permuta-
tion of Alt(S′), for S′ = S′′×{0, 1}. The group Alt(S′) is generated by its 3-cycles, and any permutation
h′ of support S′ lifts into a permutation h = ξ(h′) ∈ Sym(H) such that C is h-invariant, because S′′ is
the support of the cycle g′′ and C is g-invariant.

Now, for any 3-cycle σ′ ∈ Sym(H ′) with C being ξ(σ′)-invariant, we build πξ(σ′),C . According to the
previous paragraph, this will conclude the proof. First, let r = (0 · z1, 0 · z2, 0 · z3) ∈ Alt(G) (for some
three arbitrary distinct zi ∈ G′) and pick an arbitrary x = ((q, d), a) ∈ S′′ ⊆ H ′′. Now πr,C∩[x]0 belongs
to G`,Qdec,Γ with word norm O(T (C)), where T is defined in the previous lemma. Here we see πr,[x]0 as
the 3-cycle

(((q, d, 0, z1), a) ((q, d, 0, z2), a) ((q, d, 0, z3), a))
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in Alt(H).
Denote (h′1, h′2, h′3) = σ′ with h′i = ((qi, di, gi), ai) ∈ S′ ⊆ H ′. By conjugating πr,C∩[x]0 with the three

following permutations of Sym(H) for i = 1, 2, 3:

h′i
(z) ↔ ((q, d, 0, zi), a)

we build in G`,Qdec,Γ with word norm O(T (C)) the element π(h′1
(z),h′2

(z),h′2
(z)),C , where h′i

(z) ∈ H is the

lift of h′i whose second ghost-component is z, i.e. h′i
(z) = ((qi, di, (gi, z)), ai). We obtain:

πσ,C =
∏

z∈G′

π(h′1
(z),h′2

(z),h′2
(z)),C

Readers with a background in complexity theory will find the following version of the statement useful;
it is immediate from the definition of NC1 and the previous lemmas.

Lemma 2.4

Let L be a language in NC1, and Ln its words of size n. For any ghost-ignorant g ∈
Alt(Qdec × Γ), if Ln is ghost- and g-invariant, then fg,Ln ∈ G`,Qdec,Γ has polynomial
word norm in n.

We now provide upper bounds on Lemma 2.3 for a few specific conditions, following the proof of
Lemma 2.2.

Lemma 2.5

Let C ⊆ (Qdec × Γ) be a condition of the form ∼ c, for c ∈ ({0, 1, 2} ∪ {•})j with
j ≤ ` and∼ ∈ {=, <,≤, >,≥} some lexicographic (in)-equality, i.e.w ∈ C if and only
if, if J ⊆ J0, j − 1K is the ordered set of non-“•” indices of c, then w|J ∼ c|J .
Then T (C) = O(|c|2).

Proof. We use the fact that the permutations of Lemma 2.2 are only permuting the ghost to reduce the
head movement. This is a matter of divide and conquer: for w ∈ {0, 1, 2}j and (c ∈ {0, 1, 2} ∪ {•})j , if J
is the set of non-“•” indices of c, then:

w = c ⇐⇒
(
wJ0,j′−1K∩J = cJ0,j′−1K∩J

)
∧
(
wJj′,j−1K∩J = cJj′,j−1K∩J

)
w < c ⇐⇒

(
wJ0,j′−1K∩J < cJ0,j′−1K∩J

)
∨
((
wJ0,j′−1K∩J = cJ0,j′−1K∩J

)
∧
(
wJj′,j−1K∩J < cJj′,j−1K∩J

))
So if C is the condition = c, and g1, g2 ∈ Alt(G) (considered as a subgroup of Alt(Qdec × Γ)), then:

π[g1,g2],=c =
[
πg1,=cJ0,j′−1K

, ρ−j′ ◦ πg2,=cJj′,j−1K
◦ ρj′

]
Taking j′ = bk/2c, we obtain T (C) = O(|c|2). Similarly, if C is the condition < c, we obtain T (C) =
O(|c|2). The other cases follow using elementary Boolean algebra.
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2.2.2 Addition
Lemma 2.6

For k ∈ {0, 1, 2}∗, |k| ≤ ` and qd ∈ Q × D, let s(k, [qd]) be the permutation on the
cyclic tapes of C`,Qdec,Γ that does nothing on configurations w containing no head in
[qd] = {q}×{d}×G, and adds the ternary number k to the |k| tape-letters to the right
of heads in state [qd], i.e. if wJi,i+|k|−1K = ([qd], c0) · c1 . . . c|k|−1:

s(k, [qd])(w)Ji,i+|k|−1K = ([qd], c′0) · c′1 . . . c′|k|−1

where v3(c′0 . . . c′|k|−1]) ≡ v3(c0 . . . c|k|−1) + k mod 3|k|

and s(k, [qd])(w)j = wj if j /∈ Ji, i+ |c| − 1K.
Then s(k, [qd]) has word norm O(|k|3) in G`,Qdec,Γ.

Proof. Performing addition modulo 3|k| reduces to rotating digits and performing carries. Define r[qd] ∈
Alt(Qdec) (considered as a permutation of Alt(Qdec×Γ)) the tape-invariant permutation that rotates the
letter x ∈ Γ at the head (on the tape, not in the transport component) with the 3-cycle (0, 1, 2) ∈ Alt(Γ)
if the head is in state [qd]. Below, we perform the standard “school algorithm” for addition.

First, move the head |k| letters to the right by applying ρ|k|−1. Apply πr[qd] if k|k|−1 = 1, πr2
[qd]

if
k|k|−1 = 2, or the identity if k|k|−1 = 0. Then, for j ∈ J1, |k| − 2K, do (with the notations of Lemma 2.5):

1. Move the head to the left with ρ−1.

2. Denoting k′ = kJ|k|−j,|k|−1K, apply πr[qd]◦πr[qd],<•k′ if k|k|−j−1 = 1, πr2
[qd]
◦πr[qd],<•k′ if k|k|−j−1 = 2,

and πr[qd],<•k′ if k|k|−j−1 = 0 (in other words, unconditionally add the corresponding digit of k, and
perform a carry if the word to the right proves it necessary).

So s(k, [qd]) is the composition of O(|k|) permutations of G`,Qdec,Γ whose word norms are O(|k|2),
which concludes the proof.
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2.3 Proof of Lemma 2.1

Recall that Sdec denotes the decorated version of SMART: in this section, we prove that (T`,Sdec)n, the
action of the n-th power of Sdec on the cyclic tapes of C`,Qdec,Γ, has word norm O(`4).
To do so, Section 2.3.1 implements the encoding from Section 1.3 in G`,Qdec,Γ with word norm O(`4).

Section 2.3.2 implements additions on encoded counters with word norm O(`3). Finally, Section 2.3.3
conjugates (T`,Sdec)n to the addition of n on encoded counters, and concludes the proof of Lemma 2.1.

2.3.1 Implementing the encoding with involutions

The “ducking” trick

We indulge in a little digression about a classical idea in reversible computation that we call ducking.
Suppose we want to perform a piecewise-defined permutation φ on a set C : we have finite partitions⊔p
i=1Ci = C and

⊔p
i=1Di = C , bijections φi : Ci → Di, and φ can be written as the union φ =

⊔
i φi (of

graphs of functions). Suppose now that for each i,
1. we can “efficiently implement” some element ψi : C → C (i.e. such ψi has a small normwith respect

to some set of generators) such that ψi|Ci = φi, and
2. the sets Di have a simple description.

How can we implement the bijection φ efficiently?

To do this, we add some auxiliary symbols to C , and consider instead permutations on C × {d1, d2} ×
J0, 5K (you may recognize the duck and the ghost symbols). We may see φi and ψi as permutations on
C × {d1, d2} by identifying C × {d1} ∼= C , and fixing C × {d2} pointwise; and then as permutations of
C × {d1, d2} × J0, 5K by completely ignoring the last symbol.
Observe now that |{d1, d2} × J0, 5K ≥ 5 and is even, and consider the permutation πi that flips the

symbol in {d1, d2} (which we call the duck) if and only if the word w in the C-component belongs to Di.
By the previous section, if we take “simple description” to mean the existence of an NC1 circuit computing
membership in Di, then the element πi has small word norm.
Now conjugate πi by ψi to get χi = ψ−1

i ◦πi ◦ψi. It turns out that χi exchanges Ci×{d1}× J0, 5K and
Di×{d2}×J0, 5K, and the correspondence betweenCi andDi is precisely φi, while on otherCj×{d1} and
Dj×{d2} it has no effect. One may check this by a case analysis, but the simple way to understand this is
that conjugation by ψi translates the “preimage side” (duck equal to d1) forward, and does not act on the
“image side” (duck equal to d2). So, whenwe conjugate the exchangeDi×{d1}×J0, 5K↔ Di×{d2}×J0, 5K
by ψi, inDi × {d1} × J0, 5K we now see ψi-elements of Ci × {d1} × J0, 5K, so the exchange becomes the
desired Ci × {d1} × J0, 5K↔ Di × {d2} × J0, 5K.
Now, the χi have disjoint supports, so they commute. Composing them in any order, by the assumption

on the φi, we obtain the permutation that exchanges C × {d1} × J0, 5K and C × {d2} × J0, 5K, and for
all i, points that belong in Ci × {d1} × J0, 5K are moved to Di × {d2} × J0, 5K by applying φi in the
C-component (and flipping the duck). Finally, when composing this permutation with an additional flip
of the duck, we obtain a map that performs the original map ψ on C × {d1} × J0, 5K, and performs ψ−1

on C × {d2} × J0, 5K.

Using ducks to implement the encoding with involutions

In this section, we use this ducking trick and the previous lemmas to implement the inductive encoding of
Section 1.3 in G`,Qdec,Γ. More precisely, we use the duck ofD = {d1, d2} to “decompose” each step of the
encoding, which are piecewise-defined permutations, into products of transpositions that exchange ducks
d1 and d2.
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For Φ... one of the encoding steps in Figure 1.2, 1.3 and 1.4, or 1.5, letW 7→ W ′ be one of its cases (i.e.
one line of rewriting in one of the aforementioned figures), withW,W ′ ⊆ C`,Q,Γ.
Denote by Wdec,W

′
dec their decorated versions andW d1

dec (resp.W d2
dec) the subset ofWdec whose heads

bear duck d1 (resp. d2). Finally, let

(w ∈W d1
dec)↔ (Φ...(w) ∈W ′d2

dec)

be the involution of Sym(C`,Qdec,Γ) that swaps words w ∈ W d1
dec with words Φ...(w) ∈ W ′d2

dec. More
precisely, we rewrite the symbols as indicated in the respective figure, swap the duck and we copy all
other symbols unchanged.

Lemma 2.7

For any such case W 7→ W ′, the permutation (w ∈ W d1
dec) ↔ (Φ...(w) ∈ W ′d2

dec)
belongs in G`,Qdec,Γ with norm O(`3).

Proof. For any configuration w ∈ C`,Qdec,Γ, the condition w ∈ W d1
dec checks the state of the head in w,

the values of some tape-letters, and a counter being non-zero (in the case of Figure 1.3) or full-zero (in the
case of Figure 1.4). By Lemma 2.5, denoting πd,Wdec the ducking permutation that swaps ducks d1 and d2
on the heads of words w if and only if w ∈Wdec, then πd,Wdec belongs in G`,Qdec,Γ with norm O(`2).
By conjugating πd,Wdec by a sequence of permutations conditioned on the duck being d2, we can then

build (w ∈ W d1
dec) ↔ (Φ...(w) ∈ W ′d2

dec) with norm O(`3) (this O(`3) comes from the addition of some
number to a counter).

On an example, considerW 7→W ′ being the following transformation between levels k and k+ 1 (this
is the third rewrite in Figure 1.3):(∗ c 1 ∗

I1

)
→

(∗ [v3(c) + f(n) + 1](3) ∗
J1

)
Then the conditionWdec is the conjunction of the head being in state I1, on top of the tape-letter 1, and
the k + 1 tape-letters at its left being non-zero. By Lemma 2.5, πd,Wdec belongs in G`,Qdec,Γ with norm
O(k2). Then, one can conjugate πd,Wdec with the following sequence of permutations, which we all apply
conditioned on the head having duck d2:

1. Apply the transposition (1, 0) ∈ Sym(Γ) on the tape-letter under the head to change the letter 1
into 0 if the head has duck d2 (norm O(1)). At the moment, we have the permutation:(∗ c 1 ∗

Id1
1

)
↔

(∗ c 0 ∗
Id2

1

)
2. Move the counter c one step to its right, and move the tape-letter 0 under the head k+ 1 steps to its

left. To do so (word normO(k)), just shift each letter of the counter one step to its right while using
the transport component of the ghost as a temporary buffer, and move the 0 to the leftmost position
(applying all these permutations only if the duck is d2). At the moment, we have the permutation:(∗ c 1 ∗

Id1
1

)
↔

(∗ 0 c ∗
Id2

1

)
3. Apply s([f(k) + 1](3), [Id2

1 ]), namely the permutation that adds f(k) + 1 to the ternary number to
the right of the head (norm O(k3)). Note that we take [f(k) + 1](3) of length k+ 2. Then move the
head one step left (norm O(1)) if the duck is d2. At the moment, we have the permutation:(∗ c 1 ∗

Id1
1

)
↔

(∗ [v3(c) + f(n) + 1](3) ∗
Id2

1

)
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4. Apply the transposition that swaps Id2
1 and Jd2

1 . We finally obtain:(∗ c 1 ∗
Id1

1

)
↔

(∗ [v3(c) + f(n) + 1](3) ∗
Jd2

1

)
Define Cd1

`,Qdec,Γ and Cd2
`,Qdec,Γ the cyclic tapes whose heads respectively have ducks d1 and d2. We

complete the “ducking” process and obtain as an immediate corollary:

Lemma 2.8

Define Πinit,Πn7→n+1 and Π`,final as:

Π... : (w ∈ Cd1
`,Qdec,Γ)↔ (Φ...(w) ∈ Cd2

`,Qdec,Γ)

where Φ... is a transformation defined in Section 1.3. Then Πinit,Πk 7→k+1 and Π`,final
all belong in G`,Qdec,Γ with word norm O(`3).

Proof. Each of these transformations Φ... is composed of finitely many casesW 7→W ′ of disjoint support
and images, i.e. each Π... can be written as the product of finitely many (w ∈ W d1

dec) ↔ (Φ...(w) ∈
W ′d2

dec).

Lemma 2.9

Denoting πd the involution that swaps ducks d1 and d2, let

Π` = πd ◦Π`,final ◦
(

`−2∏
k=0

πd ◦Πk 7→k+1

)
◦ πd ◦Πinit

Then Π` ∈ G`,Qdec,Γ with norm O(`4). And, assuming w ∈ Cd1
`,Qdec,Γ, we have

Π`(w) = Φdec(w), where Φdec denotes the decorated version of the encoding described
in Section 1.3.

Proof. This is an immediate consequence of Lemma 2.8, the stability of Cd1
`,Qdec,Γ and Cd2

`,Qdec,Γ by every
πd ◦Π..., and of the correctness of the encoding proved in Lemma 1.5.

One should note that, on configurations w ∈ Cd2
`,Qdec,Γ, Π` “produces garbage”: we claim no meaningful

interpretation for the image of such w.

26



CHAPTER 2. FINITARY DISTORTION OF THE SMART MACHINE

2.3.2 Additions on the encoding space
Lemma 2.10

Define +`,n,d1 as the bijection ofC`,Qdec,Γ that performs the addition of n in base `·2·3`

in the sense of our encoding, i.e. +`,n,d1 is the shift-commuting bijection defined by
+`,n,d1(w) = w ifw contains a head with duck d2 or no head at all, and ifw = ([t], c0) ·
c1 . . . c`−1 with t ∈ Qdec has duck d1 and Q-projection qi ∈ {I,J,B,C} × {1, 2},
then +`,n,d1(w) = w′, where:

w′ =

σ
−j
(
([t′], c′0) · c′1 . . . c′`−1

)
if q ∈ {I,B}

σj
(
([t′], c′0) · c′1 . . . c′`−1

)
if q ∈ {J,C}

where t′ is equal to t with the Q-component qi replaced by qi′ , j is the quotient of
(i− 1) · 3` + v3(c) + n by 2 · 3`, and (i′ − 1) · 3` + v3(c′) is the remainder.
Then +`,n,d1 belongs in G`,Qdec,Γ with word norm O(`3).

Proof. As rotating the whole tape at most ` times can be done with word norm O(`2), we can assume that
0 ≤ n < 2 · 3`.
First, the addition of nmodulo 2·3` (and without rotating the tape if the addition overflows), conditioned

on the head having duck d1, can be implemented with normO(`3). The proof is very similar to Lemma 2.6,
as we consider the configurationw as counters of {1, 2} ·{0, 1, 2}`, the only difference being the bit {1, 2}
being carried by the state q1 or q2.
We now need to perform a rotation of the tape if the addition modulo 2 · 3` of the previous paragraph

overflowed, which is equivalent to (i′ − 1) · 3` + v3(c′) ≡ (i − 1) · 3` + v3(c) + n mod 2 · 3` being
strictly smaller than n. Define πI,J (resp. πB,C) the involution that exchanges statesI andJ (resp.B,C)
if (i′ − 1) · 3` + v3(c′) < n (and, of course, if they both have duck d1). By Lemma 2.5, this involution has
word norm O(`2).
Then, if rI (resp. rB) rotates the whole tape right if the head is in state (Ii, d1, ·) (resp. (Bi, d1, ·) (this

permutation belongs in G`,Qdec,Γ: use the transport component of the ghost as a temporary buffer), the
commutator [πI,J, rI] rotates the whole tape right if the state is I and (i′ − 1) · 3` + v3(c′) < n, and
rotates the whole tape left if the state is J and (i′ − 1) · 3` + v3(c′) < n. Similarly, [πB,C, rB] rotates
B-tapes right and C-tapes left if (i′ − 1) · 3` + v3(c′) < n.
We conclude that +`,n,d1 (the composition of these steps) indeed belongs in G`,Qdec,Γ with norm O(`3).

2.3.3 End of the proof
Lemma 2.11

Define:

T d1
`,Sdec

(c) =
{
T`,Sdec(c) if c ∈ Cd1

`,Qdec,Γ
c otherwise

Then T d1
`,Sdec

∈ G`,Qdec,Γ with word norm O(`4).

Proof. Let +`,n,d1 be given by Lemma 2.10. With Lemma 2.9, one can conjugate +`,n,d1 with Π` and obtain
a bijection onC`,Qdec,Γ that maps configurations ofCd1

`,Qdec,Γ to theirn-th iterate bySdec, and is the identity
on Cd2

`,Qdec,Γ. In other words:
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(
T

`,Sd1
dec

)n

= (+`,n,d1)Π`

Indeed, the addition of +n,k,d1 is only performed on heads having duck d1. And the shift of the tape,
when the addition modulo 2 · 3` overflows, is performed to the right (resp. to the left), exactly like Φ2·3`

performs it on configurations CI and CB (resp. CJ and CC).

We can now prove the third point of our main Lemma 2.1 about SMART being distorted on finite cyclic
tapes: for Sdec, we have δ(`, n) = O(`4).

Proof. Denoting πd the “ducking” involution that swaps ducks d1 and d2, we have

(T`,Sdec)n =
(
πd ◦

(
T

`,Sd1
dec

)n

◦ πd

)
◦
(
T

`,Sd1
dec

)n

because (T d1
`,Sdec

)πd = T d2
`,Sdec

.

28



3
Distortion in ΣZ and consequences

Let Σ be a finite alphabet. The set ΣZ, once equipped with the prodiscrete topology, becomes a Cantor
space called the Z full shift ; and a Z subshift (or subshift for short if the context is clear) is a closed and
shift-invariant subset of ΣZ. As mentioned in the general introduction, Z subshifts are also defined in
terms of forbidden patterns.
A recent trend in symbolic dynamics is the study of automorphism groups of subshifts. Typical activities

include the study of restrictions that dynamical properties of the subshift put on these groups, and in turn
constructing complicated automorphism groups or subgroups thereof. The former activity has been most
successful in the low-complexity setting, see [PS22] for a recent account of the state of the art. The latter
activity has been most successful on sofic shifts, in particular a lot is known about the finitely-generated
subgroups of automorphism groups of full shifts, see [Sal20] for a listing.
In this chapter, we study the group-theoretic notion of distortion – introduced by Gromov [Gro93] –

in the context of automorphism groups of subshifts. If G is a finitely-generated group, we say g ∈ G
is a distortion element, or distorted, if the word norm |gn| grows sublinearly (with respect to some, or
equivalently any, finite generating set). For groups that are not finitely-generated, we say that an element
is distorted if it is distorted in some finitely-generated subgroup.
Two basic examples of groups with distortion elements are the Heisenberg group with presentation
〈a, b | [[a, b], a], [[a, b], b]〉, where the element [a, b] has quadratic distortion, meaning we can represent an
element of the form [a, b]Ω(n2) by composing n generators; and the Baumslag-Solitar group BS(1, 2) with
presentation 〈a, b | b−1ab = a2〉 where a is easily seen to be exponentially distorted (i.e. the word norm
of an grows logarithmically).
The previous examples show that distortion elements can appear in nilpotent and metabelian linear

groups. It is known that they cannot appear in biautomatic groups, mapping class groups, and the outer
automorphism group of the free group [CF06]. See [GK11; LM18; CF06; GL19; CC20; FH06; Pen20; Nav21]
for other distortion-related works.
Getting back to automorphism groups, it is an open problem whether the automorphism group of any

subshift can contain a distortion element [CFKP18]. It is not known whether the Heisenberg group [KR90]
or the Baumslag-Solitar group BS(1, 2) embed in Aut(AZ), or indeed in the automorphism group of
any subshift. (It is also open whether the additive group of dyadic rationals Z[1

2 ] ≤ BS(1, 2) embeds
in Aut(AZ) [BLR88].)
Besides being an interesting group-theoretic notion, the quest for distortion elements in automorphism

groups of subshifts is motivated by several purely symbolic dynamical considerations. First, [CK16, The-
orem 1.2] shows that finitely-generated torsion-free subgroups of the automorphism group of a subshift
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of polynomial complexity are virtually nilpotent. See [DDMP16, Theorem 5.5] for a similar conclusion
for inverse limits of bounded step nilsystems. If we could rule out distortion in such examples, we could
conclude virtual abelianness.
Second, it is known that the Baumslag-Solitar group, more generally any group with an exponentially

distorted element, does not embed in the automorphism group of a zero-entropy subshift [CFKP18]. More
precisely, it was observed there that the Morse-Hedlund theorem allows one to translate a distortion el-
ement into a lower bound on the complexity of a subshift. This is notable, as this is the only known
restriction for automorphism groups of general zero-entropy subshifts. Thus, distortion looks like a natu-
ral candidate for restrictions on automorphism groups of general subshifts (as far as the authors know, no
restrictions are known on countable subgroups).
Third, distortion is tied to an intrinsic notion in automorphism group theory, namely the growth of

the radius (a.k.a. range) of the automorphism, when seen as a cellular automaton. Namely, distortion in
the group sense implies sublinear growth of the radius [CFK19]. It is not immediately obvious that even
sublinear radius growth is possible (indeed this was left open in [CFK19]), but several examples of sublinear
radius growth have been constructed. The most relevant for us is the observation from [GS17] that one
can even obtain sublinear radius growth in the automorphism group of a full shift: the so-called SMART
machine, when simulated by an automorphism, gives rise to such growth.
While distortion elements have not previously been exhibited in automorphism groups of subshifts, some

facts are known about their dynamics (mostly related the notion of radius). Links to expansive directions
and Lyapunov exponents are shown in [CFK19]. A related result is shown in [BDM22], namely distortion
elements of automorphism groups of general expansive systems can not themselves be expansive. Links
to the dimension group action and inertness are discussed in [CFK19; Sch20].

This chapter proves Theorem 3.4, which is the main result of this intership: the automorphism group of
every non-trivial full-shift contains a distortion element of infinite order.
Section 3.1 recalls some useful definitions about subshifts, cellular automata, automorphisms and group

distortion.
Section 3.2 details the conveyor belt trick, which we use to embed Turing machines into non-trivial full-

shifts. It also precisely states Theorem 3.4 about distortion in every non-trivial full-shift, and provides the
necessary mathematical context around the intermediary results.
Sections 3.3 and 3.4.1 focus on the proof of the general distortion result Lemma 3.5, which states that

any machine that satisfies the properties from Lemma 2.1 gives rise to a distorted automorphism on a full
shift. Section 3.4.2 concludes the proof of Theorem 3.4 with Lemma 3.9, which shows how to optimize the
degree to four in the case of the SMART machine.
Sections 3.5 lists some interesting consequences of Theorem 3.4. Surprisingly, some of these conse-

quences reach further than automorphism groups of subshifts: for example, Theorem 3.4 implies the exis-
tence of distortion elements of infinite order in the multi-dimensional Brin-Thompson groupsmV (m ≥ 2)
by Theorem 3.18, which attracted the interest of mathematicians studying group geometry.
Finally, Section 3.6 considers a few open follow-up questions.

3.1 Definitions

3.1.1 Subshifts
Let Σ be a finite alphabet. An element x ∈ ΣZ is called a configuration. An element w ∈ Σ∗ is called a

word or a pattern, and a pattern w ∈ Σ∗ is said to appear in a configuration x ∈ ΣZ, denoted w v x, if
there exists some i ∈ Z such that xi+j = wj for every j ∈ J0, len(w)− 1K.
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In the following, Σ is equipped with the discrete topology and ΣZ with the product topology. The latter
is generated by the cylinders [a]j = {x ∈ ΣZ : xj = a} for a ∈ Σ and j ∈ Z. This makes ΣZ a Cantor
space. The left shift σ : ΣZ 7→ ΣZ defined by σ(x)i = xi+1 is a Z action on ΣZ. For a more detailed
introduction, we refer the reader to [LM95, Chapter 1, 2, 3, 6].

Definition 3.1 Z subshifts

A subshift X is a closed and σ-invariant subset of ΣZ. Equivalently, there exists a
(potentially infinite) family of forbidden patterns F such that:

X = XF ,
{
c ∈ ΣZ : ∀w ∈ F , w 6v c

}
Note that several families of forbidden patterns may define the same subshift.
For X a subshift and n ∈ N, we denote Ln(X) the set of finite words of length n that appear in X , and
L(X) =

⋃
n∈N Ln(X) its language. We say that a subshift X is sofic if L(X) is a regular language.

3.1.2 Automorphisms

In this section, we briefly introduce the automorphism group of a subshift.

Definition 3.2 Morphisms and automorphisms

Given a subshiftX , a continuous and shift-commuting map f : X 7→ X is called amor-
phism of X . An automorphism is a shift-commuting heomeomorphism, i.e. a bijective
morphism.

Given a subshift X , the set of its automorphisms is a group under composition. We denote it Aut(X).
Automorphisms are better understood in terms of reversible blockmaps (or reversible cellular automata).

Given a subshift X , a map f : X 7→ X is a cellular automata if there exists a finite neighborhood N ⊆ Z
and some local function h : N 7→ Σ such that for any x ∈ X , f(x)i = h(x|i+N ). Then, by [Hed69,
Theorems 3.4 and 5.14], the morphisms of X are exactly its cellular automata; and its automorphisms are
exactly its reversible cellular automata, i.e. the bijective maps f : X 7→ X such that both f and f−1 are
cellular automata.

3.1.3 Group distortion

Definition 3.3 Group distortion

Given a group G, an element g ∈ G of infinite order is (group) distorted if there exists
a finite set S ⊆ G such that

|gn|S = o(n)

where |g|S is the word norm of g in the finitely generated subgroup 〈S〉, ie. the length
of the shortest presentation of g by elements of S.

We can qualify distortion depending on how the distance between gn and the identity grows: for exam-
ple, an element g is exponentially distorted if it has logarithmic growth, i.e. |gn|S = O(logn). As there is
no convention for polylogarithmic growth, the rest of this chapter works directly with word norms rather
than with distortion functions1.

1Note that for well-behaved functions, the word norm growth is just the inverse of the distortion function.
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3.2 Context and statement of the main result on (Σ∗)Z

3.2.1 Main result
The main result of this chapter, and in fact the most important of this report, is that the automorphism

group of some full shift (thus any full shift, as the automorphism groups of full shifts with different non-
trivial alphabets embed in each other by [KR90]), contains a distortion element of infinite order:

Theorem 3.4

For any non-trivial alphabet Σ, the group Aut(ΣZ) has an element g of infinite order
such that |gn|F = O((logn)4) for some finite set F .

This solves the second subquestion of [CFKP18, Question 5.1] in the affirmative. The element g in this
theorem is essentially the SMART machine [COT17], which morally confirms a conjecture of [GS17],
although the embedding we use is slightly more involved than the specific one considered in [GS17]. The
group 〈F 〉 we use in the proof is detailed in Lemma 3.9.
Most of the present chapter deals with the proof of this theorem, using technicalities from Chapters 1

and 2. In this section, as Turing machines act on the sofic subshifts of bi-infinite tapes containing at most
one head, we detail the conveyor belt trick which makes Turing machine act on a full-shift by wrapping
heads inside conveyor belts. We then state Lemma 3.5. Together with Lemma 2.1, along with some addi-
tional considerations from Lemma 3.9, they prove Theorem 3.4 completely.

3.2.2 The conveyor belt trick

Recall that a Turing machineM = (Q,Γ,∆) acts on the subshift XQ,Γ (see Section 1.1), i.e. on the set
of bi-infinite tapes containing at most one head (i.e. one letter of Q× Γ). This set is a sofic subshift.
To make a Turing machineM = (Q,Γ,∆) act on a full shift instead, we use the conveyor belt trick (see

for example [GS17, Lemma 3]). Let

ΣQ,Γ =
(
Γ2 × {+1,−1}

)
t
(
(Q× Γ)× Γ

)
t
(
Γ× (Q× Γ)

)
where we call conveyor bits the bits of {+1,−1} in (Γ2 × {+1,−1}), and define the action ofM on
(ΣQ,Γ)Z as the following automorphism fM.
First, any x ∈ (ΣQ,Γ)Z uniquely splits into x = . . . w−2w−1w0w1w2 . . . such that for every i ∈ Z, we

have either

wi ∈
(
Γ2 × {+1}

)∗((
(Q× Γ)× Γ

)
∪
(
Γ× (Q× Γ)

))(
Γ2 × {−1}

)∗
or wi ∈

(
Γ2 × {+1}

)+(
Γ2 × {−1}

)+

with the exception that on some configurations, their might exist a leftmost or rightmost word with an
infinite number of+1 or−1.2 Wedescribe the action of fM on such finite wordsw: as configurationsmade
of infinitely many finite wi are dense, and fM will be uniformly continuous on these, fM will uniquely
extend to an automorphism on the full shift (and this extension is exactly what one expects it to be).

• On words w ∈
(
Γ2 × {+1}

)+(
Γ2 × {−1}

)+
, we do nothing.

2The corresponding decomposition claim in [GS17] has a mistake, as it uses Kleene stars also in the second form.
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• On words w ∈
(
Γ2 × {+1}

)∗((
(Q× Γ)× Γ

)
∪
(
Γ× (Q× Γ)

))(
Γ2 × {−1}

)∗
, let

w′ ∈
(
Γ2
)∗((

(Q× Γ)× Γ
)
∪
(
Γ× (Q× Γ)

))(
Γ2
)∗

be the word obtained by erasing the conveyor bits +1 and−1 from w. We see w′ as a conveyor belt
of length 2|w|, that is the superimposition of a top word u and a bottom word v, glued together at
their borders as if the words were laid down on a conveyor belt.
More precisely, let u = π1(w′) and v = π2(w′) the reversal of π2(w′). Then one of these words is
in Γ+, and the other is in Γ∗(Q×Γ)Γ∗. Then we makeM act on (uv)Z (despite it having infinitely
many heads, it should be clear what this means, as all the heads move with the same transition), i.e.
define

u′v′ = TM
(
(uv)Z

)
[0,2|w|−1]

Note thatu′v′ also contains exactly one head. We then rewrapu′v′ into a conveyor belt of (Γ2)∗(((Q×
Γ) × Γ) ∪ (Γ × (Q × Γ)))(Γ2)∗, and add conveyor bits +1 (resp. −1) to the cell symbols in Γ2 to
the left of the head (resp. right).
This defines how fM acts on such words w. This can be summarized as: fM considers such words
as a cyclic tape folded in the shape of a conveyor belt, and acts on the cyclic tape.

Note that x and fM(x) have the same decomposition into a product of conveyor belts, and that ifM is
reversible, then fM is an automorphism of ΣQ,Γ

Z.

Another way to see Turing machines in conveyor belts is the following. For g ∈ Alt(Q × Γ), define
fup

g , fdown
g and fg as the following automorphisms of Aut(ΣQ,Γ

Z):

fup
g (x)i =

{
xi if xi ∈ Γ2 × {+1,−1} or xi ∈ (Γ× (Q× Γ))
(g(q, a), b) if xi = ((q, a), b) ∈ ((Q× Γ)× Γ)

fdown
g (x)i =

{
xi if xi ∈ Γ2 × {+1,−1} or xi ∈ ((Q× Γ)× Γ)
(b, g(q, a)) if xi = (b, (q, a)) ∈ (Γ× (Q× Γ))

fg(x)i =


xi if xi ∈ Γ2 × {+1,−1}
(g(q, a), b) if xi = ((q, a), b) ∈ ((Q× Γ)× Γ)
(b, g(q, a)) if xi = (b, (q, a)) ∈ (Γ× (Q× Γ))

For every q ∈ Q, define ρq as the right movement of heads in state q inside their respective conveyor belts,
and ρ =

∏
q∈Q ρq . And define GQ,Γ the group they generate:

GQ,Γ = 〈{fg,up, fg,down, fg | g ∈ Sym(Q× Γ)} ∪ {ρq | q ∈ Q}〉
The generators ofG`,Q,Γ introduced in Chapter 2 are in direct correspondence with the generators {fg |

g ∈ Sym(Q × Γ)} and {ρq | q ∈ Q} of GQ,Γ, and the latter can also be seen as the basic instructions of
Turing machines: moving heads based on their states, or permuting their values.

In a similar way as for the cyclic tapes in Chapter 2, it is easy to see that for anymachineM = (Q,Γ,∆),
fM is defined as the composition β−1 ◦ β+1 ◦ fα:

α(q, a) =
{

(q′, b) if (q, a, q′, b) ∈ ∆
(q′, a) if (q,±1, q′) ∈ ∆

β+1 =
∏

q′|∃q,(q,+1,q′)∈∆
ρq′

β−1 =
∏

q′|∃q,(q,−1,q′)∈∆
ρq′
−1
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3.2.3 Technical result: Lemma 3.5
For an arbitrary Turing machine M = (Q,Γ,∆), define the symmetrized Turing machine Ms =

(Qs,Γs,∆s), with Qs = Q × D where D = {d→, d←}, with the same tape alphabet Γ, and transi-
tions ∆s = ∆d→ × (∆−1)d← , i.e. the machine whose heads carry ducksD = {d→, d←}, and acts forward
in time on heads having duck d→ and backward in time on heads with duck d←.
Define

Γ∗ = Γ× {0, 1}
Q∗ = Qs × {+1,−1} × {0, 1}2

Σ∗ = ΣQ∗,Γ∗ =
(
Γ2
∗ × {+1,−1}

)
t
(
(Q∗ × Γ∗)× Γ∗

)
t
(
Γ∗ × (Q∗ × Γ∗)

)
where the bit of {0, 1} inΓ∗ is the tape-ghost, and the value {+1,−1}×{0, 1}2 inQ∗ is the state-ghost. Both
are technicalities: the tape-ghosts are used as temporary markings to check the lengths of conveyor belts,
and the state-ghosts make permutations even and increase the cardinality of our sets of even permutations
to make them perfect groups. Note that the {+1,−1} in Σ∗ are not ghosts, but conveyor bits: they point
in the direction of the unique head in the conveyor belt containing the cell, if there is one.

Finally, define θ the right movement of the heads disregarding the conveyor belt structure, i.e. for x ∈
(Σ∗)Z, if πup : Σ∗ 7→ Γ∗ returns the top tape-letter, πdown : Σ∗ 7→ Γ∗ returns the bottom tape-letter, and
πsign : Σ∗ 7→ {+1,−1} returns the conveyor bit of the head or the tape cell:

θ(x)i =


((

(q, πsign(xi), ghost), πup(xi)
)
, πdown(xi)

)
if xi−1 ∈ ({(q,±1, ghost)} × Γ)× Γ(

πup(xi),
(
(q, πsign(xi), ghost), πdown(xi)

))
if xi−1 ∈ Γ× ({(q,±1, ghost)} × Γ)

((πup(xi), πdown(xi)), πsign(xi)) if xi−1 ∈ Γ2 × {+1,−1}

And define
G∗ = 〈GQ∗,Γ∗ ∪ {θ}〉

the finitely-generated group generated by θ and the Turing-machine instructions of GQ∗,Γ∗ . The auto-
morphism θ is only one used in the proof of Lemma 3.8, and is the only generator that can modify the
conveyor-belt structure.

We can now establish the second part of the proof of Theorem 3.4. Considering fMs ∈ Aut((ΣQs,Γs)Z)
as an element of Aut((Σ∗)Z):

Lemma 3.5

If some Turing machineM satisfies the three properties of Lemma 2.1, then (fMs)n

has word norm O(logd+1 n+ log2 n) in G∗ ≤ Aut(Σ∗Z).

Remark. Note that the condition in this lemma is aboutM (and notMs) verifying the properties of Lemma 2.1,
but the conclusion of this lemma is about (fMs)n (and not (fM)n).

Together with Lemma 2.1, this proves that (fSdec,s
)n has word normO((logn)5). After the proof of this

lemma, we provide in Section 3.4.2 some additional tricks to lower the upper bound to O((logn)4) and
complete the proof of Theorem 3.4.
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3.3 Permutation engineering in (Σ∗)Z

In order to prove Lemma 3.5, the main idea is to build fMs (which acts on conveyor belts) from the
automorphisms T`,M (which act on finite cyclic tapes) by applying the right T`,M in all the conveyor belts
of corresponding length. This is done in the first part of this section. The second part builds a few specific
automorphisms required by the two-scale trick, a technicality used in Section 3.4.1.

3.3.1 From C`,Q∗,Γ∗ to conveyor belts in (Σ∗)Z
Lemma 3.6

Let g ∈ Sym(Q∗ × Γ∗) be a ghost-ignorant permutation.
Then for any ` ∈ N and ∼ ∈ {<,≤,=,≥, >}, fup

g,len∼` (resp. fdown
g,len∼`, fg,len∼`), the

automorphism that applies fup
g (resp. fdown

g , fg) in conveyor belts of length ∼ `, has
word norm O(`2).

Proof. Let g ∈ Alt(Q∗ × Γ∗) be an even permutation that is ignorant of the tape-ghost bit of Γ∗ and of
one state-ghost bit {0, 1} ⊆ Q∗, in the usual sense that it factors through the projection that forgets these
bits. Any ghost-ignorant permutation of Sym(Q∗ × Γ∗) fits this condition. We assume that the second
state-ghost is the one ignored. We first prove that, for any ` ∈ N, the permutation fup

g,ghost0=ghost`
(resp.

fdown
g,ghost0=ghost`

), that applies fup
g (resp. fdown

g ) if the tape-ghost under the head and the tape-ghost ` steps
to its right have equal bit values (and otherwise does nothing), has word norm O(`).
As the alphabet (Qs×{+1,−1}×{0, 1})×Γ has cardinality greater than five, by Ore’s theorem [Ore51,

Theorem 7], there exist g1, g2 ∈ G such that g = [g1, g2]. Define fup
g,ghost0=ghost`=0 the permutation that

applies fup
g if and only if both the tape-ghost of Γ∗ under the head and the tape-ghost of Γ∗ that is ` steps

to its right are equal to 0.
Then, denoting πghost ∈ Alt(Q∗ × Γ∗) the involution that exchanges the second (ignored) state-ghost
{0, 1} ⊆ Q∗ and the tape-ghost of Γ∗ under the head, we have:

fup
g,ghost0=ghost`=0 =

[(
fup

g1,ghosth=0

)fπghost
,
(
fup

g2,ghosth=0

)ρ−`◦fπghost◦ρ
`
]

where fup
g,ghosth=0 applies g on the head if the second ghost bit ofQ∗ is equal to 0. To see this, observe that(

fg,ghosth=0
)ρ−i◦fπghost◦ρ

i

applies g if the tape-ghost at (relative) cell i is 0.
Using a similar trick with the value 1 instead of 0, and composing both, we obtain fup

g,ghost0=ghost`
that

applies fup
g if and only if both the tape-ghost under the head and the tape-ghost ` steps to its right are

equal. The same reasoning proves the same statement for fdown
g,ghost0=ghost`

.

For g ∈ Alt(Q∗ × Γ∗) an even permutation that leaves the ghost bit of Γ∗ and one ghost bit of Q∗
unchanged, we now prove that fup

g,len|` (resp. fdown
g,len|`) that applies f

up
g (resp. fdown

g ) inside conveyor belts
whose length divides `, and is the identity otherwise, has word norm O(`).
Indeed, by Ore’s theorem [Ore51, Theorem 7] once again, there exists g1, g2 such that g = [g1, g2]. Now,

denoting rghost ∈ Alt(Q∗ × Γ∗) the involution that increases (modulo 2) the tape-ghost of Γ∗, applying
frghost once modifies both the ghost under the head and the ghost ` steps to its right if and only if the
length of the conveyor belt divides `. Using this, we obtain:

fup
g,len|` =

[
fup

g1,ghost0=ghost`
,
(
frghost ◦ f

up
g2,ghost0=ghost`

◦ frghost

)]
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As any power of g belongs in Alt(Q∗ × Γ∗), by going through the divisors of ` in decreasing order, we
can build any fup

g,len=` with word norm O(`2).3 For example, if ` = 6,

fg,len=6 = fg,len|1 ◦ fg−1,len|2 ◦ fg−1,len|3 ◦ fg,len|6.

(Our conveyor belts cannot actually have length 1, so fg,len|1 may be dropped.)
We also build any fup

g,len≤` withword normO(n2) by going through the interval J1, `K in decreasing order
and picking suitable powers of g. In particular, we get fup

g,len∼` for the relations ∼ ` with ∼ ∈ {<,≤,=}.
From this, the automorphisms with ∼ ∈ {≥, >} are easy to obtain.

Remark. One may view the above proof as an instance of Möbius inversion. If g has order m, take K =
⊕Z+Zm the commutative ring of infinitely many copies of Zm. We seeK as keeping track of how many times
g is applied at each conveyor belt length. Define functions ι, γ : Z+ → K where ι(n) as the indicator function
of n (as an element of K), and γ(n) the indicator function of the divisor poset of n. Then γ(n) =

∑
d|n ι(d)

so by Möbius inversion ι(n) =
∑

d|n γ(d)µ(d, n) where µ is the Möbius function of the divisibility poset; thus
µ(d, n) tells us which power of g we should use for each divisor to get ι(n). The values of ι are a basis of K ,
so we can get other conditional applications of g with linear combinations.

Consider now any T ∈ G`,Q∗,Γ∗ . There exists T1, . . . , TN ∈ {πg | g ∈ Alt(Q∗ × Γ∗)} ∪ {ρq | q ∈ Q∗}
such that T = TN ◦ · · ·◦T1. Then, as each generator πg with g ∈ Alt(Q∗×Γ∗) corresponds to a generator
fg of G∗, T defines an automorphism fT of Aut((Σ∗)Z). The choice of fT is not canonical, but we can
always take it to be defined by the shortest possible formula, or use the formula we used to define T . By
construction, if T ∈ G`,Q∗,Γ∗ , then fT acts like T on conveyor belts of length ` (and produces garbage on
conveyor belts of length 6= `).
We now use the previous lemma to condition fT so that it acts only in conveyor belts of length `, by

“symmetrizing” T .

Lemma 3.7

Assume T ∈ G`,Q,Γ. Then fTs,len=` ∈ Aut((Σ∗)Z), which acts like (the lift of) T on
conveyor belts of length ` having duck d→, like (the lift of) T−1 on conveyor belts of
length ` with duck d←, and is the identity otherwise, has word norm O(‖T‖ + `2) in
G∗.

Remark. Once again, this lemma requires conditions on T as an element of G`,Q,Γ (and not G`,Q∗,Γ∗), but
its conclusion is about fTs,len=` in Aut((Σ∗)Z) (and not about fT,len=` in Aut(ΣQ,Γ)).

Proof. Assume T ∈ G`,Q,Γ. Then T lifts into an automorphism ofG`,Q∗,Γ∗ , and T d→ which acts like T on
cyclic tapes with duck d→, and is the identity otherwise, is also an automorphism of G`,Q∗,Γ∗ with word
norm O(‖T‖): indeed, any presentation of T in G`,Q,Γ lifts into a presentation in G`,Q∗,Γ∗ , in which we
then restrict every generator to apply only on heads with duck d→.
Let d ∈ Sym(Q∗ × Γ∗) be the involution that swaps ducks d→ and d← on the head. By Lemma 3.6,

fd,len=` has word norm O(`2) and:

fTs,len=` = fd,len=` ◦
(
(fT d→ )−1 ◦ fd,len=` ◦ (fT d← )

)

3The number of divisors satisfies d(`) = o(`ε) for any ε > 0, so we even get word norm O(`1+ε) for fup
g,len=`.
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3.3.2 A few specific automorphisms

Define fd,→t (resp. fd,t← and fd,t↔t) the automorphism of Aut((Σ∗)Z) that swaps ducks d→ and d← on
the head if the head is at distance less than t from the left border of its conveyor belt, and at least t from
the right border of its conveyor belt (resp. distance at least t from the left border and less than t from the
right border, resp. distance at least t from both borders).
Define fcb,→t (resp. fcb,t← and fcb,t↔t) the automorphism of Aut((Σ∗)Z) that applies the involution

(+1) ↔ (−1) on the conveyor bits carried by Γ2
∗ × {+1,−1} or the sign {+1,−1} in Q∗, at distance t

to the right of the heads (resp. left of the heads, resp. both left and right of the heads), independently of
the conveyor belt structures. Note that, these three automorphisms modify the conveyor-belt structures
of the configurations they are applied on.

Lemma 3.8

We have:

1. fd,→t, fd,t← and fd,t↔t have word norm O(t2) in G∗.

2. fcb,→t, fcb,t← and fcb,t↔t have word norm O(t2) in G∗.

Proof. For the first item, for g ∈ Alt(Q∗) (considered as a subgroup of Alt(Q∗×Γ∗)), there exists g1, g2 ∈
Alt(Q∗) such that g = [g1, g2] ∈ Alt(Q∗). With the commutator trick,

[fup
gj
, ρ−1 ◦ fdown

g′j
◦ ρ]

applies fg on heads that are exactly in the top-right corner of a conveyor belt. Similar formulas exist for
bottom-right, top-left and bottom-left corners of conveyor belts, so that one can condition any such fg

to be applied on heads that are not in the left, right or both corners of their conveyor belts, with word
norm O(1).
Then, using a divide and conquer approach with the commutator trick, one can implement fd,→t, fd,t←

and fd,t↔t in G∗ with word norm O(t2), as in the proof of Lemma 2.5.

Implementing the second item is a bit more ad-hoc, but very simple: we use the right shift θ that moves
heads to their right while disregarding the structure of the conveyor belts. Then, if g ∈ Sym(Q∗ × Γ∗) is
the involution that swaps the sign {+1,−1} carried by the head regardless of its state,

fcb,→t = θ−t ◦ fg ◦ θt

Similar formulas exist for fcb,←t and fcb,t↔t.
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3.4 Final proofs

3.4.1 Proof Lemma 3.5
We now prove Lemma 3.5: under the assumptions of Lemma 3.5, the automorphisms (fMs)n have word

norm O(logd+1 n+ log2 n) in G∗.
Before going into the precise math, here is an overview of the proof. The main idea consists in building

(fMs)n from the (T`,M)n, which by hypothesis have small word norm O(`d). By Lemma 3.7, we can
manage this way conveyor belts of increasingly bigger lengths.
However, we can’t compose infinitely many of these operations, so after some point we need to manage

all the larger conveyor belts at once. To do so, notice that m(n) – the movement ofM in n steps – is
assumed to be O(logn). As a consequence, a head at distance more than m(n) from the borders of its
conveyor belts won’t see the borders in question. In such a case, we can then create temporary conveyor
belts of size O(logn), apply the corresponding (T`,M)n, and erase the temporary borders: the applied
operation coincides with (fMs)n in the original large conveyor belt.
Let’s formalize these ideas. In particular, generating temporary conveyor belts will not work as expected,

which justifies the introduction of the “two-scale trick”.

Proof. Fix an integer n, which is the power of fMs we want to build. Without any loss of generality,
assume that n is even. Indeed, if n is odd, then n − 1 is even, and ‖(fMs)n‖ = ‖(fMs)n−1‖ + O(1).
Denote n = 2n′. With notations from Lemma 2.1, let L = C · logn′ + C ′. By hypothesis, every (T`,M)n′

has word norm O(`d) in G`,Q∗,Γ∗ .
First, using Lemma 3.7, we manage all conveyor belts of length < 12L with word norm O(L · Ld), as:

(fMs,len<12L)2n′ =
6L−1∏
`=1

f(T2`,Ms )2n′ ,len=2`

Then, to manage larger conveyor belts, we use what we call the “two-scale trick”. In the introductory
paragraphs, we mentioned the idea of introducing temporary conveyor belts to move heads that originally
belonged in very large conveyor belts, and then remove the temporary borders. However, the difficulty lies
in properly removing the temporary conveyor belts once the machine has been applied. To solve this, we
will actually use temporary conveyor belts twice, with different sizes (hence the name “two-scale trick”).
We give a visual explanation of this trick in Figure 3.1.
Define L1 = 4L − 2, L2 = 8L − 2, L3 = 12L − 2. Note that L1 (resp. L2) is the length of a conveyor

belt constructed by fcb,L↔L (resp. fcb,2L↔2L). With Lemma 3.8 and Lemma 3.7, define:

λn′ =
(
fcb,2L↔2L ◦

(
f(TL2,Ms )n′ ,len=L2

)
◦ fcb,L↔L ◦

(
f(TL1,Ms )n′ ,len=L1

)−1

◦fcb,2L↔2L ◦
(
f(TL1,Ms )n′ ,len=L1

)
◦ fcb,L↔L

).
Let fi denote the composition of the first i automorphisms on this list, i.e. f1 = fcb,2L↔2L, . . . , f7 = λn′ .
The actions of the inverses of the automorphisms fi are illustrated in the left column in Figure 3.1 (on a
certain subset of configurations).
Now denote d ∈ Alt(Q∗×Γ∗) the ducking involution, i.e. the permutation that flips ducks d→ and d←,

and consider:
fMs,2n′,3L↔3L = (λn′)−1 ◦

(
fd,3L↔3L

)
◦ (λn′) .

We see from Figure 3.1 that, letting f = fd,3L↔3L and reading the successive partial conjugations ffi

top-down, fd,3L↔3L gets conjugated to a map that applies our machine (Ms)n′ twice if it is on a conveyor
belt that extends sufficiently both left and right, and flips the duck as a side product.
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qd→
←→
f qd←

i i

qd→
←→
ff1

chop at
distance 2L

qd←

i− 2L i+ 2L i− 2L i+ 2L
Machine runs

backward in time.
Machine runs

forward in time.

q−d→ ←→
move

ff2 q+
d←

i− t i+ t′

q−d→ ←→
ff3

chop at
distance L

q+
d←

i− t− L i− t+ L i+ t′ − Li+ t′ + L

Machine runs
forward in time.

Machine runs
backward in time.

qd→
←→
ff4

move

qd←

qd→
←→
ff5

glue at
distance 2L

qd←

Machine runs
backward in time.

Machine runs
forward in time.

q−d→ ←→
ff6

move

q+
d←

i− t i+ t′

q−d→ ←→
ff7

glue at
distance L

q+
d←

i− t i+ t′

Figure 3.1: The “two-scale trick”

Illustration of the two-scale trick. We show the conveyor belts as lines (without tape letters). The head may
be on either track. The head is in position i in state q initially, was in position i − t in state q− at time −n′,
and will be in position i + t′ in state q+ at time +n′. The automorphism f acts trivially unless we are in the
situation of the first line, so the conjugated automorphisms also act nontrivially only in the shown situation.
In particular ff7 behaves as expected.
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Similar formulas fMs,2n′,3L← (resp. fMs,2n′,→3L) exist, managing heads in large conveyor belts at dis-
tance less than 3L from their right (resp. left) border. The latter two have word norm O(Ld+1 + L2), as
we have to replace occurrences of (f(T`,Ms )n′ ,len=`) with

∏`
j=1(f(Tj,Ms )n′ ,len=j). In any case, these per-

mutations have disjoint support (because the distance to a conveyor belt border is checked “after n′ steps
of computation”) and word norm O(Ld+1 + L2).

Now if d ∈ Alt(Q∗ × Γ∗) denotes the involution that flips ducks d→ and d←, we have:

(fMs)n =
(
fd,len≥L3 ◦ fMs,n,→3L ◦ fMs,n,3L← ◦ fMs,n,3L↔3L

)
◦
(6L−1∏

n=1
fT`,M

n,len=2l

)

Which concludes the proof.

3.4.2 Improving the upper bound on SMART

As the computation of (T`,Sdec)n is “uniform” in ` (the k-th step of the encoding, and the k-th step of
the addition, are the same on all conveyor belts of length ≥ k), we can compute the action of SMART on
all conveyor belts in parallel. This drops the word norm of (TSdec,s

)n from O((logn)5) with Lemma 3.5,
toO((logn)4) with this new method. We also make minor optimizations to the alphabet, by joining some
of the auxiliary symbols used on the Turing machine and automorphism side.
All in all, Lemma 3.9 concludes the proof of Theorem 3.4.

Lemma 3.9

Let S be the SMART machine introduced in Section 1.2, and define S? = (Γ?, Q?,∆?)
as follows:

Γ? = Γ× {0, 1}

Q? = Q× {d→, d←} ×
(
{+1,−1} × {0, 1}2 × Γ

)
∆? =

{
(q?, a?, q

′
?, b?), (q?, δ, q

′
?) |

∃d ∈ {d→, d←}, g ∈ ({+1,−1} × {0, 1}2 × Γ), g′ ∈ {0, 1}
q? = (q, d, g), q′? = (q′, d, g), a? = (a, g′), b? = (b, g′),
d = d→ =⇒ (q, a, q′, b) ∈ ∆ or (q, δ, q′) ∈ ∆

d = d← =⇒ (q, a, q′, b) ∈ ∆−1 or (q, δ, q′) ∈ ∆−1
}

and

Σ? = ΣQ?,Γ? =
(
Γ2

? × {+1,−1}
)
t
(
(Q? × Γ?)× Γ?

)
t
(
Γ? × (Q? × Γ?)

)
Then (fS?)n has word norm O(log4 n) in Aut((Σ?)Z).

Proof. Once again, we prove that (fS?)n hasword normO(log4 n) in the following subgroup ofAut((Σ?)Z)

GQ?,Γ? = 〈{fg,up, fg,down, fg : g ∈ Sym(Q? × Γ?)}
∪ {ρq | q ∈ Q?} ∪ {θ}〉

We start by explaining the new alphabet. We have dropped the duck {d1, d2} to fuse it with {d→, d←},
and we have dropped the hex component J0, 5K of the ghost. We can use the set {+1,−1} × {0, 1}2 in
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its place, as the only thing we used was that the cardinality is large enough, and that 6 is even. The hex
component was also only used temporarily, always returning to its original value after modifications to
other components of the state, so it is safe to reuse this set for it.
The reason we have applied the construction without the duck {d1, d2} is of course that this is the exact

same duck; our assumption in the previous section is that we can efficiently apply the Turing machine
when the duck is d→, while doing nothing on ducks d←, and this is exactly how the duck was used in
Chapter 2 (see Lemma 2.11).

Now we explain the optimization; we only give a high-level explanation, as this is completely analo-
gous to what was done in the previous section. We only amend the proof above by proving that both
(fS?,len<L3)2n′ and (fS?,len≤L3)2n′ have word norm O(L4), as they are sufficient to manage both small
conveyor belts of length < L3 and large conveyor belts in the two-scale trick.

1. The encoding (word norm O(L4)). Let Πinit, Πk 7→k+1 and Π`,final be the steps of encoding of S
defined in Lemma 2.8, with Π... also swapping ducks d→ and d←:

Π... : (w ∈ Cd→
`,Q?,Γ?

)↔ (Φ...(w) ∈ Cd←
`,Q?,Γ?

)

As explained above, the generators ofGl,Q?,Γ? correspond to generators ofGQ?,Γ? , so that each Π...

of Gl,Q?,Γ? can also be considered as an element fΠ... of GQ?,Γ? .

The key point of this proof consists in understanding that Πk 7→k+1 behaves as expected on every
conveyor belt of length ≥ k + 2, and produces garbage on conveyor belts of length ≤ k + 1.
In other words, let d be the “ducking” involution that swaps ducks d→ and d← on heads, and define:

finit = fd,len<L3 ◦
(
f−1

Πinit
◦ fd,len<L3 ◦ fΠinit

)
fk 7→k+1 = fd,k+2≤len<L3 ◦

(
f−1

Πk 7→k+1
◦ fd,k+2≤len<L3 ◦ fΠk 7→k+1

)
f`,final = fd,len=l ◦

(
f−1

Π`,final
◦ fd,len=l ◦ fΠ`,final

)
Each of these elements has word norm O(L2 + L3). Then, define:

fencode =
(

L3−1∏
`=1

f2`,final

)
◦

L3−1∏
k=1

fk 7→k+1

 ◦ finit

The automorphism fencode, which acts on conveyor belts of length < L3 and encodes SMART con-
figurations with ducks d→ into their correct encoding, and produces garbage on ducks d←, has word
norm O(L4). (A similar automorphism exists for conveyor belts of length ≤ L3).

2. The addition of k on ducks d→ (word norm O(L3)). We follow the proof of Lemma 2.10. First, we
manage addition modulo 3` in every conveyor belt of length ` < L3 = 12L − 2. To do so, we use
the commutator trick on the proofs of Lemma 2.6 and Lemma 3.6, so that we can build the ternary
addition of each of the first ` digits of n in base 3 on conveyor belts of length ≤ ` with norm O(`2),
which means that adding n mod 3` to every conveyor belt of length ` for ` < L3 can be done in
word norm O(L3).
Let us now focus on addition modulo 2 · 3`. Let b` be the integer division of n by 3` modulo 2, and
q` be the quotient of n by 2 ·3`. In conveyor belts of length exactly `, we can manage the addition of
b` to the head, while considering the carry of the previous ternary addition, with word norm O(`2).
Considering the sizes of conveyor belts one by one, this step can be done on all conveyor belts of
length ` < L3 in word norm O(L3).
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Finally, one has to shift the tape by q` mod ` steps (or q` + 1 mod ` in case of an overflow) left or
right (depending on the state) in conveyor belts of size `. Using the same commutator trick on states
I,J and B,C as in the proof of Lemma 2.10, this can be done with word norm O(`2). Considering
the sizes of conveyor belts one by one, this step can be done on all conveyor belts of length ` < L3
in word norm O(L3).
All in all, the automorphism f+n that performs the addition of n in conveyor belts of all sizes < L3
with ducks d→, has word norm O(L3).

Then, conjugating f+n by fencode performs (fS?)n on heads with duck d→ on conveyor belts of length
< L3, and is the identity otherwise. Adding the same automorphism conjugated with fd and composing,
we obtain (fS?,len<L3)2n′ with word norm O(L4). Similar formulas exist for (fS?,len≤L3)2n′ .

As a final remark, the word norm of this implementation of (fS?)n isO(logn · (ω≤(logn) +ω+(logn)),
where ω≤(N) is the complexity of the lexicographic inequalities on words of lengthN , and ω+(N) is the
complexity of the ternary addition on words of length N , both in the setting of reversible gates. While
we could not find a way to perform ω+(N) with complexity less than O(N3), it would be interesting to
optimize this specific operation by itself.
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3.5 Corollaries

We prove several results of interest, which are all straightforward corollaries of Theorem 3.4.

3.5.1 About automorphism groups of subshifts

First, we obtain the characterization of the class of sofic shifts whose automorphism groups have distor-
tion elements.

Theorem 3.10

Let X be a sofic shift. Then Aut(X) contains a distortion element if and only if X is
uncountable.

Proof. If X is uncountable, then Aut(AZ) ≤ Aut(X) [Sal18; KR90].
IfX is countable, then the proof of Proposition 2 in [ST12] shows that every automorphism f ∈ Aut(X)

is either periodic or admits a spaceship, namely a configuration of the form x = ...uuuuvwww... which is
not spatially periodic, and fn(x) = σm(x) for somem 6= 0. Clearly this prevents distortion.

As another immediate consequence, using the argument of [CFKP18] we obtain that the automorphism
group of a full shift cannot be embedded in the automorphism group of a low-complexity subshift. Recall
that the lower entropy dimension [Mey11] of a subshift is defined by the formula

D(X) = lim inf
k→∞

log(logNk(X))
log k ,

where Nk(X) is the number of words of length k that appear in X . The entropy dimension of a (one-
dimensional) subshift with positive entropy is of course 1.

Lemma 3.11

LetX be a subshiftwith lower entropy dimension less than 1/d. If f ∈ Aut(X) satisfies
|fn| = O(logd n), then f is periodic.

Proof. Suppose we have |fn| = O(logd n) for large n. Then the radius of fn is also O(logd n). It follows
that the trace subshift of f has complexity function at most n 7→ NbC logd nc(X) for some constant C .
If f is not of finite order, by the Morse-Hedlund theorem we must have NbC logd nc(X) > n for all n.

Substituting be
d
√

n/Cc for n we get Nn(X) ≥ e
d√an for some constant a > 1. Substituting this lower

bound into the definition of lower entropy dimension, we get D(X) ≥ 1
d .

Theorem 3.12

The group Aut(AZ) has a finitely-generated subgroup G such that every subshift X
with G ≤ Aut(X) has lower entropy dimension at least 1/4.

Theorem 3.12 is of course an immediate corollary of Lemma 3.11. It states a “low-complexity restriction”
on the automorphism group, i.e. it states that automorphism groups of subshifts with low enough com-
plexity (growth of the number of admissible words) cannot have some property. The above theorem seems
to be the first “low-complexity restriction” on automorphism groups where
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1. the complexity bound is superpolynomial,
2. there are no additional dynamical restrictions, and
3. the prevented behavior can be exhibited in the automorphism group of another subshift.

There are previously known restrictions satisfying any two of these items. For 1.&2., zero entropy pre-
vents exponential distortion [CFKP18]; for 1.&3., [CK16] shows that ifX is minimal and has upper entropy
dimension less than 1/2, then it is amenable (while Aut(AZ) is not); for 2.&3. (very low complexity re-
strictions) there are many results, see [PS22].

3.5.2 Distortion in Turing machine groups

We recall the definition of the group of Turing machines from [BKS16].

Definition 3.13

Let n ≥ 2 and k ≥ 1. Let Yn be the full shift on n letters, and Xk = {x ∈
{0, 1, ..., k}Z | 0 /∈ {xi, xj} =⇒ i = j}. Then

RTM(n, k) = {f ∈ Aut(Yn ×Xk) | f |Yn×{0Z} = id|Yn×{0Z}}.

Theorem 3.14

Let n ≥ 2, k ≥ 1. Then the group of Turing machines RTM(n, k) contains a distortion
element; indeed there is a finitely-generated subgroupG = 〈F 〉 and an element f such
that |fn|F = log4 n.

Proof. We show that it immediately follows from the main theorem that RTM(72, 384) has a distortion
element. We then explain how to conclude this for all RTM(n, k).
Recall that our automorphisms use the alphabet

Σ? =
(
Γ2

? × {+1,−1}
)
t
(
(Q? × Γ?)× Γ?

)
t
(
Γ? × (Q? × Γ?)

)
where Γ? = Γ× {0, 1} and Q? = Q× {d→, d←} ×

(
{+1,−1} × {0, 1}2 × Γ

)
.

We may instead view this as

(Γ2
? × {+1,−1}) t (Q? × {↑, ↓} × Γ2

?),

by grouping (Q?×Γ2
?) and (Γ?× (Q?×Γ?)) together and replacing the choice with an arrow from {↑, ↓}.

Next, moving {↑, ↓} to the state and dropping {+1,−1} out of it, we may view this as

(Γ2
? × {+1,−1}) t (Q′ × {+1,−1} × Γ2

?),

for a certain set of states Q′ with |Q′| = |Q?| = 384.
Consider the sofic subshift Z where a symbol of (Q′ × {+1,−1} × Γ2) can appear at most once. We

clearly have a conjugacy Z ∼= X384 × Y72, since |Γ2
? × {+1,−1}| = 72.

It is easy to see that all of the generators F defined in Lemma 3.9 fix Z . Furthermore, our generators
only act near the head, so by definition this restricted action makes them elements of RTM(72, 384). The
element fMs coming from the SMART machine clearly has infinite order, since it acts as the SMART
machine on infinite configurations. The word norm of fMs w.r.t. F of course cannot grow faster after
restricting these elements to an invariant subspace, so we obtain that the subgroup of RTM(72, 384)
generated by F still has a distortion element, and the distortion is at least as bad as on the full shift.

44



CHAPTER 3. DISTORTION IN ΣZ AND CONSEQUENCES

Now, we describe some minor modifications to the main construction that allow to conclude the result
for RTM(n, k). In the construction of the main theorem, in place of the alphabet recalled above, take any
finite set S and use instead

((Γ2 × {+1,−1}) t S) t (Q′ × ((Γ2 × {+1, 1}) t S)).

Imagining elements of S as new empty conveyor belts of size 1, it is clear howmost generators of F should
act, as their action is defined by how they act on finite conveyor belts. The element θ does not respect the
conveyor belts, but it is also clear how it should act (now that we have moved {+1,−1} out of the state
onto the tape) – it simply moves all heads.
Now recall that the only use of θ was to make sure that the automorphisms fcb,→t (resp. fcb,t← and

fcb,t↔t) are in our group. These automorphisms apply the involution (+1) ↔ (−1) on the sign carried
either by Γ2

∗ × {+1,−1} or by a head, at distance t to the right of the heads (resp. left of the heads, resp.
both left and right of the heads). The correct extension of these is simply that the flip (+1)↔ (−1) does
nothing on symbols in S. Then θ allows the implementation of natural analogs of the automorphisms
fcb,→t, fcb,t← and fcb,t↔t (with the exact same description).
Next, we recall that the automorphisms fcb,→t are only used “through conjugation”, i.e. they are used

during the two-scale trick in very specific situationswherewe already know the head is on a large conveyor
belt, in particular there are no S-symbols in the affected part. Thus the proof goes through without any
modifications.
The introduction of S with |S| = t changes the group of Turing machines from RTM(72, 284) to

RTM(72 + t, 384), and RTM(72 + t, 384) clearly embeds in RTM(72 + t, 384 + `) for any ` ≥ 0 (by
behaving as the identity when the head is in one of the `many new states). In particular for large enough
m, we can pick t, ` such that 72 + t = nm and 384 + ` = knm, to get a distortion element in a subgroup
of RTM(nm, knm). Finally, there is an embedding of RTM(nm, knm) into RTM(n, k), by considering
m-blocks of cells as individual cells, and considering the word on the tape at the origin as part of the state
(indeed this is an isomorphism).

3.5.3 Distortion in higher-dimensional Brin-Thompson mV

It was shown by Belk and Bleak that classical reversible Turing machines embed in the Brin-Thompson
group 2V . More generally, the group of Turing machines embeds in 2V , and indeed this embedding is
entirely transparent. For this, we recall the moving-tape model of Turing machines.

Definition 3.15

Write RTMfix(n, k) for the family of homeomorphisms f : JkK × JnKZ → JkK × JnKZ

such that for some radius r ≥ 1 and local rule floc : {0, 1}r×{0, 1}r×JkK→ {0, 1}∗×
{0, 1}∗ × JkK we have

f(xu.vy, a) = (xu′.v′y, b) whenever floc(u, v, a) = (u′, v′, b)

and for all u, v, floc(u, v) = (u′, v′, n) satisfies |u′|+ |v′| = 2r.

A proof of the following easy fact was outlined in [BKS16]; one simply translates tape shifts into head
movement into the opposite direction.

Lemma 3.16

The family of homeomorphisms RTMfix(n, k) forms a group under composition, and
there is a canonical group isomorphism RTMfix(n, k) ∼= RTM(n, k).
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Lemma 3.17

The group RTM(n, k) embeds in the Brin-Thompson group mV for all m ≥ 2, n ≥
2, k ≥ 1.

As I did not contribute to this result, which is very similar to the proof in [BB17], and was also essentially
stated in [BKS16], I only give an outline of the proof written by Ville Salo:

Proof. The group 2V embeds inmV , so it is enough to show this form = 2. First, it is enough to embed
RTM(n, 1), since RTM(n, k) embeds in RTM(n, k+`) for all ` ≥ 0, thus in particular in RTM(n, nm) for
sufficiently largem, and this group is isomorphic to RTM(n, 1) (see the end of the proof ofTheorem 3.14).
Now pick a complete suffix codeC ⊂ {0, 1}∗ of cardinality n, and a complete prefix codeD ∈ {0, 1}∗ of

cardinality n. One can uniquely parse any x.y ∈ {0, 1}Z as · · ·u−2u−1.v0v1v2 · · · with u−i ∈ C, vi ∈ D
for all applicable i, which gives a homeomorphism φ : {0, 1}Z → JnKZ. For g ∈ RTM(n, 1), the map gφ

is easily seen to be in 2V , so this gives a group-theoretic embedding of RTM(n, 1) into 2V .

Dynamically, the proof gives a topological conjugacy between the natural action of RTM(n, 1) and the
natural action of the subgroup of 2V that respects the encoding.

Then, Theorem 3.4 and the aforementioned embedding lead to the following corollary:

Theorem 3.18

The Brin-Thompson groupmV contains a distortion element.

Proof. The embedding of the group RTM(n, k) in particular embeds the group where we constructed a
distortion element. Adding the finite generating set ofmV clearly cannot make the element less distorted.

This theorem provides a new restriction for geometries of 2V . Namely, it is known that Thompson’s
group V admits a proper action by isometries on a CAT(0) cube complex [Far05]. By [Hag21,Theorem 1.5],
a group with distortion elements does not admit such an action, thus:

Corollary 3.19

The Brin-Thompson group mV does not act properly on a CAT(0) cube complex for
m ≥ 2.

We thank Anthony Genevois for pointing out this corollary.
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3.6 Open questions

Question 1. Are there ever distortion elements in Aut(X) forX a minimal subshift? What aboutX of zero
entropy?

Minimal subshifts are interesting, because at present we do not know any restrictions on their automor-
phism groups, yet all known examples are locally virtually abelian. Zero entropy is interesting because
on the one hand there are many known examples of interesting behaviors in their automorphism groups,
but [CFKP18] shows that exponential distortion is impossible.

Next, it seems worth recalling the remaining parts of [CFKP18, Questions 5.1–3].

Question 2. Are there more natural subgroups having distortion elements in Aut(AZ), or even in Aut(X),
where X ⊂ AG is an arbitrary subshift on an abelian group G? For example, can we embed the Heisenberg
group (or more generally SL(3,Z)), or the Baumslag-Solitar group BS(1, n)?
TheHeisenberg group was originally asked about in [KR90] (though not explicitly due to distortion con-

cerns). One important note about this group is that every (infinite f.g. torsion-free nonabelian) nilpotent
group contains a copy of it. Nilpotent groups are considered some of the simplest (in the non-technical
sense) kinds of infinite groups after abelian groups; in the case of automorphism groups of subshifts we
can implement a wide variety of behaviors, yet embeddability of nilpotent groups remains a mystery.
Embedding the Baumslag-Solitar group is the same as finding an element of infinite order that is con-

jugate to a higher power of itself. We believe the SMART machine does not have this property (before or
after an embedding into Aut(AZ)), but we have not proved this.
A slightly more abstract question of interest is whether there exists an amenable subgroup of the auto-

morphism group of a subshift which has distortion elements. One thing amenability rules out is groups
that are too large, e.g. f.g.-universal subgroups. TheHeisenberg group and BS(1, n) are of course amenable
(even solvable).

Question 3. Can a one-sided subshift have distortion elements in its automorphism group? Does Aut(AN)
have distortion elements?

Note that Aut(AN) is simply the subgroup of Aut(AZ) consisting of automorphisms f such that both f
and f−1 have “one-sided radius”, i.e. f(x)i, f−1(x)i depend only on xJi,i+rK for some r. We do not even
know whether one-sided automorphisms of subshifts can have sublinear radius growth.

Question 4. What are the distortion functions (word norm growth rates) of elements of Aut(AZ) (or Aut(X)
for more general subshifts)?

Of course, in the case of a non-finitely generated group like Aut(AZ), the distortion function depends
on the finite generating set chosen. While it is of interest to implement distortion functions with respect
to subgroups, a more natural object to consider is the directed set of distortion functions with increasing
generating sets.
Similar questions can be asked about groups of Turing machines and the Brin-Thompson 2V , where we

also exhibit elements whose word norm grows polylogarithmically, but have no further control on the
distortion.

A natural idea for getting control over the distortion function would be to use, in place of SMART, a
general-purpose Turing machine, which is made distorted using the reversible Hooper trick from [KO08]
(and finally embedded in some natural way into the automorphism group of a subshift). It is known that
this construction always produces Turing machines with zero Lyapunov exponents, i.e. with sublinear
movement [GS17; Jea14].

Question 5. Does the Kari-Ollinger construction in [KO08] always produce distortion elements?
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4
Surface entropies, aperiodicity and group

confluence

As mentioned in the general introduction, another direction of study in symbolic dynamics is the gen-
eralization of subshifts on groups: for G a group, G subshifts (or subshifts for short) are the closed and
shift-invariant subsets of ΣG, for a finite alphabet Σ.
The geometry of the group G then has a strong influence on the properties of subshifts having G as

a surface. For example, in terms of (a)periodicity, a lot of properties are not known. On SFTs1 on Z
or Z2, weak and strong aperiodicity are equivalent: the former asks configurations to have infinitely many
distinct translates, while the latter forbids any configurations to have a single non-trivial period vector.
This equivalence breaks over Z3, but for many groups this potential equivalence is unknown.
Another direction of study is a classification of the groups having aperiodic SFTs, i.e. SFTs that only

contain aperiodic configurations. While for some groups such examples of aperiodic SFTs are known or
proved to be impossible, for many groups, their existence is still open.

In this chapter, we consider a different direction: instead of asking for all configurations to be aperiodic,
can we ask for a sufficient condition for at least one aperiodic configuration to exist? This was the point of
view I had already developed in [CH22, Proposition 25] with Benjamin Hellouin deMenibus, which proved
that a subclass of subshifts on Zd with high complexity have to contain at least one strongly aperiodic
configuration. However, despite our best efforts during the 2021 winter break, we could not generalize
nor improve this partial result.
Ville Salo came to our rescue, and generalized [CH22, Proposition 25] to any Zd subshift. With Benjamin

Hellouin, we later improved this generalization tom-entropies and (d−m)-aperiodicity. The most inter-
esting part, though, was another generalization conducted with Ville: could we obtain a similarly minded
result on subshifts on groups? For which classes of groups?

Section 4.1 develops the generalization of [CH22, Proposition 25] obtained with Benjamin Hellouin and
Ville Salo in the case of Zd subshifts. Instead of proving the full statement, we prove one particular case,
which highlights the key idea of Ville Salo.
In Section 4.2, we create a notion we call group confluence, which generalizes the key ingredient of the

proof of Section 4.1 on Zd to orderable groups. We then prove in Corollary 4.9 that some class of groups
(namely, the poly–(torsion-free abelian groups)) are confluent.

1Subshift of finite type, i.e. defined by finitely many forbidden patterns.
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4.1 Entropies and aperiodicity in Zd-subshifts

4.1.1 Generalization on Zd subshifts
In what follows, a Zd subshift X is a closed and shift-invariant subset of ΣZd for a finite alphabet Σ.

Equivalently, there exists a family of forbidden patternsF such thatX is the set of configurations x ∈ ΣZd

that do not contain any pattern of F .

Definition 4.1 Periodicity of Zd-configurations

1. A configuration x ∈ ΣZd is (v1, . . . , vi)-periodic, for v1, . . . , vi ∈ Zd, if for any
0 ≤ j ≤ i, σvj (x) = x.

2. A configuration x ∈ ΣZd is i-periodic if there exists a family of linearly indepen-
dent vectors (v1, . . . , vi) ∈ (Zd)i such that x is (v1, . . . , vi)-periodic.

3. A configuration x ∈ ΣZd is (strongly) aperiodic if it is not v-periodic for any
v ∈ Zd.

Definition 4.2 Complexity

ForX aZd subshift, we define the complexity functionNX(n) as the number of globally
admissible patterns of domain J0, nKd that appear in X .

Definition 4.3

Let X be a Zd subshift. Form ≤ d, define them-entropy of X as:

hm(X) = lim sup
n7→+∞

logNX(X)
nm

∈ R ∪ {+∞}

For m = d, hd(X) is called the topological entropy of X . For m = d − 1, hd−1(X) is
called the surface entropy of X .

We Benjamin Hellouin de Menibus and Ville Salo, we proved the following theorem:

Theorem 4.4

Let X be any Zd subshift. If hm(X) = +∞, then there exists a configuration x ∈ X
that is (d − m)-aperiodic (i.e. for any family of d − m linearly independent vectors
(v1, . . . , vd−m) ∈ (Zd)d−m, x is not (v1, . . . , vd−m)-periodic).

This has an immediate corollary:

Corollary 4.5

Let X by any Zd subshift. If hd−1(X) = +∞, then X contains a strongly aperiodic
configuration.

In what follows, we only prove Corollary 4.5. Indeed, it was the first statement we had, and it is the
statement that we generalize in Section 4.2 from Zd subshifts to G subshifts, for some class of groups G.
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The key idea of this proof is due to Ville Salo.

4.1.2 Proof of Corollary 4.5

Define:

Bd(n, k) =J0, n+ 2kKd

Fd(n, k) =
{

(i1, . . . , id) ∈ J0, n+ 2kKd : ∀j ∈ J1, dK, ij < k or ij > n+ k
}

Id(n, k) =
{

(i1, . . . , id) ∈ J0, n+ 2kKd : ∀j ∈ J1, dK, k ≤ ij ≤ n+ k
}

Of course, Bd(n, k) is the disjoint union of Fd(n, k) and Id(n, k). We now prove that for a subshift X of
infinite surface entropy, there exist patterns of arbitrary size which agree on increasingly thick borders:

Lemma 4.6

If hd−1(X) = +∞, then for any k ∈ N, there exists two globally admissible pat-
terns w(k) 6= w′(k) of X , both with domain Bd(n, k), such that for any i ∈ Fd(n, k),
w(k)i = w′(k)i.

Proof. Let k ∈ N be fixed, and recall that a d-dimensional hypercube has 2d facets of dimension d − 1.
Then the number NX,F (n, k) of patterns of domain Fd(n, k) is at most

NX,F (n, k) ≤ |Σ|2d·k(n+2k)d−1

On the other hand, the number of admissible cubes of domain J0, n+ 2kKd isNX(n+2k). As logNX(n+
2k)/(n+ 2k)d−1 is unbounded when k is fixed and n goes to infinity, there must exist some n ∈ N such
that log(|Σ|) · 2d · k < (logNX(n+ 2k))/(n+ 2k)d−1, i.e.

NX,F (n, k) ≤ |Σ|2dk(n+2k)d−1
< NX(n+ 2k)

We conclude by the pigeonhole principle.

Proof of Corollary 4.5
Proof. Let w(k) 6= w′(k) be a family given by the previous lemma. Now, for every k ∈ N, define i(k) ∈
J0, n+ 2kKd as the maximal (for the lexicographic order) position i = (i1, . . . , id) such that w(k)i 6=
w′(k)i. Then, we have the two following properties:

∀k ∈ N, w(k)i(k) 6= w′(k)i(k)

∀k ∈ N, ∀j ∈ J0, n+ 2kKd, j >lex i
(k) =⇒ w(k)j = w′(k)j

By compactness on the sequences of globally admissible patterns σi(k)(w(k)) and σi(k)(w′(k)), there
exists two configurations x, x′ ∈ X such that:

x0 6= x′0 (4.1)

∀j ∈ Zd, j >lex 0 =⇒ xj = x′j (4.2)

By contradiction, assume there exists two linearly independent vectors u, v ∈ Zd such that x is u-
periodic, and x′ is v-periodic. As for p ∈ Zd \ {0}, either p >lex 0 or −p >lex 0, we assume u >lex 0 and
v >lex 0. Then, using u and v-periodicities and property (4.2), we obtain:

x0 = xu = x′u = x′u+v = xu+v = xv = x′v = x′0

which contradicts property (4.1).
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4.2 Group confluence

In the proof of Theorem 4.4, we use the fact that two linearly independent vectors u, v ∈ Zd (with
u, v >lex 0) generate a semi-infinite positive lattice that joins u and v in the strictly positive domain2. We
call this property confluence, and this section proves that some class of groups are confluent: namely the
poly–(torsion free abelian) groups.

4.2.1 Main result
Formally, let (G, ·) be a group equipped with a left-invariant total order≤. (This means that for a, b, c ∈

G, if a ≤ b, then c · a ≤ c · b). We denote G+ = {g ∈ G | g > 1G} and G− = {g ∈ G | g < 1G}.
For any word w ∈ G∗, we denote [w] = w0 · w1 · · ·wlen(w)−1 the corresponding element of G. The

operation w ∈ G∗ 7→ [w] ∈ G is a morphism: for w1, w2 ∈ G∗, [w1 · w2
−1] = [w] · [w2]−1 where, for any

word w ∈ G∗, w−1 denotes w−1
len(w)−1 · · ·w

−1
1 · w

−1
0 .

We say that w ∈ G∗ is a positive sequence if for every non-empty strict prefix p of w, [p] > 1G. And
we say that w ∈ G∗ is a positive path if it is a positive sequence satisfying [w] = 1G. Note that if w is a
positive path, then w−1 is also a positive path.

Definition 4.7

An ordered group (G,≤) is confluent if for any a, b ∈ G+, there exists some u ∈
{a, b, a−1, b−1}∗ such that a · u · b−1 is a positive path.

Of course, if a = b, then this definition is trivial. More interestingly, if G is torsion free abelian (every
such abelian group can be equipped with a left-order), then aba−1b−1 is a positive path.
The main result we prove in this section is that confluence is a property stable by group extensions3:

Theorem 4.8

Let 1 7→ K 7→ G 7→ H 7→ 1 be an exact short sequence such that (G,≤) is a left-
ordered group which correctly defines a left-order � on H (i.e. if π : G 7→ H is the
projection from G to H , then 1G ≤ x =⇒ 1H � π(x)).
If bothK and H are confluent, then G is confluent.

Groups obtained by iterating group extensions from a class C are called poly-C . As torsion free abelian
groups are left-orderable and confluent by a previous remark, we obtain by induction on theorem 4.8:

Corollary 4.9

Let (G,≤) be a poly–(torsion free abelian) group. Then G is left-orderable with a con-
fluent order.

Examples of such groups are torsion free nilpotent groups, strongly polycyclic groups, orwreath-products
of torsion free abelian groups.

2As Zd is abelian, the previous sentence translates into u, v, u + v, v + u > 0 and u + v = v + u. Of course, we are interested
in generalizing this to non–abelian groups as well.

3Obviously, readers unfamiliar with the technicalities of group extensions will skip the mathematical details and proofs of the
following paragraphs. Let us just say the following: group extensions are one key method used to build classes of groups. For
example, nilpotent groups are obtained by iterating central extensions from abelian groups; polycyclic groups are obtained
by iterating groups extensions from cyclic groups.
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4.2.2 Proof of Theorem 4.8
With the same notations, let a, b ∈ G+.

If a, b ∈ K

By confluence in K , there exists u ∈ {a, b, a−1, b−1}∗ such that a · u · b−1 defines a positive path. Then
a · u · b−1 is also a positive path in G, and we obtain confluence for a and b.

If a, b /∈ K

First step: confluence in H

First, we have π(a), π(b) ∈ H+ (because� is induced by (G,≤) on H). By confluence ofH , there exists
ũ ∈ {π(a), π(b), π(a)−1, π(b)−1}∗ some positive path inH such that π(a) · ũ ·π(b)−1 = 1H . Considering
u ∈ {a, b, a−1, b−1}∗ the sequence corresponding to ũ ∈ {π(a), π(b), π(a)−1, π(b)−1}∗ inG, then a·u·b−1

is a positive sequence, and [a · u · b−1] ∈ K .

If [a ·u · b−1] = 1G, then a ·u · b−1 is a positive path that proves confluence for a and b. In what follows,
we assume [a · u · b−1] 6= 1G.

DefineA = a ·u ·b−1. Then either [A] ∈ K+, or [A−1] ∈ K+. As bothA andA−1 are positive sequences
(because π(a) · ũ · π(b) is a positive path in H , and the inverse of a positive path is also a positive path),
by permuting a and b, we can assume that A = a · u · b−1 is a positive sequence satisfying [A] ∈ K+.
Now, define B = b · A · b−1 if [b · A · b−1] ∈ K+, and B = (b · A · b−1)−1 if [b · A · b−1] ∈ K− (the

case B = 1G is not possible, because A 6= 1G). We prove that B defines a positive sequence such that
[B] ∈ K+. Indeed, by definition, [B] ∈ K+, and:

• IfB = b ·A ·b−1, then consider any prefix p (non necessarily strict) ofA: as [p] ≥ 1G and b > 1G, by
left-invariance we obtain [b · p] ≥ b > 1G. So any non-empty strict prefix of B defines an element
of G+, and B is a positive sequence.

• If B = b ·A−1 · b−1, then consider any strict prefix p of A−1: as [p] ≥ 1G (because A−1 is a positive
sequence) and b > 1G, we obtain [b · p] ≥ b > 1G. The only remaining prefix of B we have to prove
positive is p = b ·A−1.
As [B] > 1G and b ≥ 1G, we obtain by left-invariance [B · b] ≥ [B] > 1G. And [B · b] =
[b ·A−1 · b−1 · b] = [b ·A−1] = [p], which proves that every non-empty strict prefix of B defines an
element of G+, i.e. that B is a positive sequence.

To conclude, we now have two positive sequences A and B that respectively start with a and b, such
that A−1 and B−1 are also positive sequences, and [A] ∈ K+ and [B] ∈ K+.

Second step: confluence in K

By confluence inK , there exists Ũ ∈ {[A], [B], [A]−1, [B]−1}∗ such that [A] · Ũ · [B]−1 is a positive path
from [A] to [B] inK . We now prove that the de-substituted path A · U ·B−1 is also a positive path in G,
for U ∈ {a, b, a−1, b−1}∗ the de-substitution of Ũ in which each letter [X] ∈ {[A], [B], [A]−1, [B]−1} is
replaced by its path X ∈ {A,B,A−1, B−1}.
Consider a non-empty strict prefix of A · U · B−1. It decomposes into P · p, for P ∈ {a, b, a−1, b−1}∗

the de-substitution of some strict prefix P̃ ∈ {[A], [B], [A]−1, [B]−1}∗ of Ũ , and p some strict prefix of
A,B,A−1 or B−1. If P is empty, then p is not, and [p] > 1G (because A,B,A−1 and B−1 are positive
sequences), so [P · p] = [p] > 1G. If P is non-empty, then [p] ≥ 1G (because it is a strict prefix of one of
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the positive sequencesA,B,A−1, B−1), and by left-invariance [P ·p] ≥ [P ] > 1G. In any case, any prefix
of A · U ·B−1 belongs in G+.
As [A ·U ·B−1] = [A · Ũ ·B−1] = 1G, the sequence A ·U ·B−1 ∈ {a, b, a−1, b−1}∗ is a positive path in

G. As A and B respectively start with letters a and b, A ·U ·B−1 starts with letter a and ends with letter
b−1. This proves confluence for a and b.

If a ∈ K, b /∈ K or a /∈ K, b ∈ K

By symmetry, assume that a ∈ K and b /∈ K . Notice that [a · b · a−1] 6= 1G (otherwise b = 1G /∈ G+).

Define a′ = a · b · a−1 if [a · b · a−1] ∈ G+, or a′ = a · b−1 · a−1 if [a · b · a−1] ∈ G−. By the previous
case, as [a′] /∈ K , there exists some word ũ ∈ {[a′], b, [a′]−1, b−1}∗ such that [a′] · ũ · b−1 is a positive path
in G: and we now prove that the de-substituted path a′ · u · b−1 ∈ {a, b, a−1, b−1}∗ of [a′] · ũ · b−1 is a
positive path in G.

First, [a′ · u · b−1] = [[a′] · ũ · b−1] = 1G.

Now, consider a non-empty strict prefix of a′ · u · b−1 in {a, b, a−1, b−1}∗. If it is a prefix (non-strict)
of a′, then it is positive: indeed, a > 1G by definition, a · b ≥ a > 1G by left-invariance, a′ > 1G by
definition, and if a′ = a · b−1 · a−1, then [a · b−1] = [a′] · a ≥ [a′] > 1G by left-invariance.
Now, consider a strict prefix of length greater than 3. It decomposes intoP ·p, whereP ∈ {a, b, a−1, b−1}∗

is the de-substitution of some prefix P̃ ∈ {[a′], b, [a′]−1, b−1}∗ of [a′] · ũ, and p is a strict prefix of either
a′, b, a′−1 or b−1.

• If p is empty, then by hypothesis [P · p] = [P ] > 1G because [a′] · ũ · b−1 is a positive path.

In particular, assume p is non-empty: it must be a strict prefix of either a · b · a−1 or a · b−1 · a−1:
• Assume p has length 1. Then p = a. As [a′] · ũ · b−1 is a positive path, we have [P ] > 1G, and by
left-invariance we obtain [P · p] = [P · a] ≥ [P ] > 1G.

• Assume p has length 2. Define P̃ ′ = P̃ · (p · a−1) ∈ {[a′], b, [a′]−1, b−1}∗, which is also a prefix of
[a′] · ũ · b−1. Then P̃ ′ is a strict prefix of [a′] · ũ · b−1, as the latter ends by b−1 and not [a′] or [a′]−1.
So [P̃ ′] > 1G, and denoting P ′ ∈ {a, b, a−1, b−1}∗ the de-substitution of P̃ ′, this means [P ′] > 1G.

Then, as a ≥ 1G, we obtain by left-invariance that [P ′ · a] ≥ [P ′] > 1G, while [P ′ · a] = [P · (p ·
a−1) · a] = [P · p].

This proves that a′ ·u·b−1 ∈ {a, b, a−1, b−1}∗ is a positive path inG, which starts with a and ends with b−1.
This proves confluence for a and b in G.

4.2.3 Consequences

We now properly define subshifts using groups as surfaces. Let G be a group, a Σ a finite alphabet. The
set ΣG equipped with the product topology becomes a Cantor space. G naturally acts on the left of ΣG by
(g · x)h = xg−1h, and we call this G action the shift.

Definition 4.10 G subshift

A G subshift (or subshift for short) is a closed and shift-invariant subset of ΣG.

To obtain a generalization of Corollary 4.5, we need to generalize the definition of surface entropy. We
suggest the following one:
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Definition 4.11 Infinite surface entropy

A G subshift X has infinite surface entropy if:

∀n > 0, ∀B b G, ∃F b G,#X|F > n#∂BF

where ∂BF = {g ∈ F | Bg 6⊆ F} is the inner boundary.

Informally, a subshiftX has infinite surface entropy if for every possible closed boundaryB, there exists
a closed subset F such that ∂BF (the inner boundary of F by B) does not determine the interior of F :
there aremore patterns inX with domainF than boundaries ofF . Unfortunately, this definition of infinite
surface entropy differs from Definition 4.3: the former on groups uses arbitrary shapes for F andB, while
the latter on Zd is restricted to hypercubes.
We plan to investigate this gap in the future. However, it should be noted that on Zd, there is no obvious

way to generalize Theorem 4.4 with arbitrary shapes instead of hypercubes: k-dimensional facets of a
hypercube (for k < d) are well-known and defined, and they coincide well with subgroups of Zd; but there
is no obvious definition of k-dimensional facets of an arbitrary shape.
In any way, using Definition 4.11, the obvious generalization of Corollary 4.5 follows by a morally iden-

tical argument:

Theorem 4.12

LetG be a group admitting a confluent right-invariant order. Then every subshiftX of
infinite surface entropy contains a strongly aperiodic configuration (i.e. a configuration
x ∈ X such that ∀g 6= 1G, g · x 6= x).

4.2.4 Questions

Let us now discuss a few points. First, Definition 4.11 has obvious links with the Følner condition of
amenability for groups. And in fact, we can easily prove that if G is a non-amenable group, then every
subshift ofG has finite surface entropy. However, amenability is not a sufficient condition forG subshifts
with infinite surface entropy to have strongly aperiodic configurations, by an example of Ville Salo:

Example. Let G = Z× Z2. Then G admits a subshift of infinite surface entropy with no strongly aperiodic
points. Namely, take a Z-full shift X , and define an action of Z × Z2 by (n, a) · x = σn(x). Clearly we
have infinite surface entropy because boundaries of natural Følner sets are of constant size but the subshift has
exponentially many patterns on them. Just as obviously, there are no strongly aperiodic points.

However, Z× Z2 has torsion (i.e. elements of finite order). This leads to the following question, asking
for a more interesting example:

Question 6. Does there exist a torsion free amenable finitely-generated group G which admits a subshift of
infinite surface entropy without any strongly aperiodic configurations?

In the other direction, one key notion in the proof of Theorem 4.12 is the notion of group confluence,
which looks like an interesting notion by itself. The obvious (probably very hard) question would be:

Question 7. Which groups admit a confluent left-order?

To relate this question to the previous paragraphs, such groups obviously cannot have torsion (because
for any left-orderable group G, 0 < g =⇒ g < g2, so in particular gn 6= 1G). One direction to consider
would be the following:
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Question 8. Does there exist a torsion free solvable group G that does not admit a confluent left-order?

Recall that solvable groups are the poly–abelian groups, i.e. obtained by induction from abelian groups.
Unfortunately, torsion free poly–abelian groups are not the poly–(torsion free abelian) groups: as a con-
sequence, the proof methods developed for Theorem 4.8 do not work anymore, which leaves this question
open.
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Conclusion

Distortion in automorphism groups of subshifts
This ARPE originally aimed at solving the following question:

Does there exist a subshift X such that Aut(X) contains distortion elements?
What conditions on X ensure that Aut(X) contains distortion elements?

We answered this question by the affirmative: yes, every non-trivial full-shift does contain a distortion
element (Theorem 3.4). We even obtained the following classification for sofic subshifts: a sofic subshift
contains a distortion element if and only if it has positive entropy (Theorem 3.10).
While this solved an open question in symbolic dynamics since at least [KR90; CFKP18], this also led to

interesting discussions with mathematicians from group geometry: indeed, Theorem 3.18 prevents the
multidimensional Brin-Thompson groups to act properly on CAT(0) cube complexes (Corollary 3.19).
While these consequences are above my understanding, it was interesting to see interactions between
automorphism groups of subshifts and another branch of mathematics.
Open interesting follow-up questions are detailed in Section 3.6. Most of them are probably very difficult,

but a few mathematicians seemed interested in working of them.

Surface entropies, aperiodicity and confluence
As a side project, we worked part-time on aperiodicity in subshifts on groups. Apart from [GHV18] and

[CH22], which studied the problem on Zd, the existence of strongly aperiodic configurations (instead of
requiring all configurations to be strongly aperiodic) had scarcely been studied, and up to my knowledge
it had never been studied for subshifts on groups.

Does infinite surface entropy implies the existence of
(strongly) aperiodic configurations?

We had left this question open with Benjamin Hellouin de Menibus a year earlier while working on
[CH22]. During this ARPE, we answered with Ville Salo by the affirmative forZd subshifts in Corollary 4.5;
furthermore, we generalized the notion to other classes of groups than Zd, and we created the notion of
group confluence. This notion naturally generalizes one of the key ingredients of the aforementioned proof,
namely: if you consider two positive elements a and b of a group, can you form two paths aw and bw′ that
“join” a and b in the positive cone?
This notion does not relatemuch to existing literature, but we leave a few open questions in Section 4.2.4.
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