The probabilistic method

Consider two disjoint events with non-null probability. Can they be independent?

Give an example of a probability space with the events A_1 , A_2 and A_3 that are two-by-two independent, but not mutually independent.

Exercice 3

Exercice 4

Exercice 1

Exercice 2

What are the expectation and variance of the number of fix points of a uniformly distributed permutation on $\{1, \ldots, n\}$?

Let G = (V, E) be a finite non directed graph. An independent set I is a subset of vertices no two elements of I are adjacent :

I independent set $\Rightarrow \forall u, v \in I, (u, v) \notin E$. Set $\alpha(G)$ the maximal size of an independent set of G, and d(v) the degree of vertex v.

We build a graph G at random the following way : vertices are added one by one in a uniformly distributed order.

1. What is the probability that a vertex v is added before all its neighbors?

2. Deduce that $\alpha(G) \geq \sum_{v \in V} \frac{1}{d(v)+1}$.

Exercice 5

Dominating set of a graph

Let is first recall a useful formula : $(1-p) \le e^{-p}$ for all $p \in [0,1]$.

A dominating set D is a set of vertives such that every other vertex is adjacent to a vertex of D :

D dominating set $\Rightarrow \forall v \notin D, \exists u \in D$ such that $(u, v) \in E$.

1. Show that if G is k-regular (all its vertices have degree exactly k), then for all dominating set, $D, |D| \ge \frac{|V|}{k+1}.$

We now assume that all the vertices of G have degree at least k, snd we build a dominating set the following way :

1. Select each vertex of V in a set S with probability $p = \frac{\ln(k+1)}{k+1}$;

2. T is the subset of the vertices in $V \setminus S$ that have no neighbors in S;

3.
$$D = S \cup T$$

- **2.** Show that *D* is a dominating set.
- **3.** What is the probability that a vertex v belongs to T?
- 4. Deduce that there exists a dominating set of size at most $|V| \frac{1+\ln(k+1)}{k+1}$.

Independence, mutual independence

Independence and intersection

A. Bouillard

Fix points of a permutation

Size of an independent set of a graph

Exercice 6

Distinct sums

A set of integers A is call a *distinct-sum* set if the sum $\sum_{a \in S} a$ is different fo each subset of S of A. For all non-negative integer n, we define f(n) as the maximal size of a distinct-sum subset of $\{1, 2, \ldots, n\}$.

- **1.** Show that $f(n) \ge 1 + \lfloor \log_2 n \rfloor$ (give an example of distinct-sum subset).
- **2.** Using a counting argument, show that $f(n) \leq \log_2 n + \log_2 \log_2 n + O(1)$.

The goal of the rest of the exercise is to improve the coefficient of the term $\log_2 \log_2 n$ by showing that

$$f(n) \le \log_2 n + \frac{1}{2} \log_2 \log_2 n + O(1)$$

Let $A \subseteq \{1, 2, ..., n\}$ be a distinct-sum set. Set k = |A| and X a subset of A chosen uniformly at random, and define S_X as the sum of the elements of X.

3. Let $\lambda > 1$. Show that

$$\mathbf{P}(|S_X - \mathbf{E}[S_X]| \ge \lambda n\sqrt{k}/2) \le 1/\lambda^2.$$

4. Deduce that

$$n \ge \frac{2^k (1 - 1/\lambda^2) - 1}{\sqrt{k\lambda}}$$

5. Conclude.