Complexité - TD 1.1

Benjamin Bordais bordais@lsv.fr www.lsv.fr/~bordais/

15 Novembre 2021

On rappelle qu'une machine de Turing utilisant un espace O(f) peut être modifié pour n'utilisé qu'un espace f (cela est donné par le théorème d'accélération en espace).

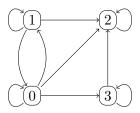
Question 1 Rappeler quel est l'espace utilisé par une machine de Turing (en particulier, pour les cas où l'on considère des machines qui utilisent un espace f(n) < n où n est la taille de l'entrée).

Représentation des graphes

Un graphe orienté est un couple (V, E), où $V = \{0, \dots, n-1\}$ est un ensemble fini de n sommets (vertex) et $E \subseteq V \times V$ est un ensemble fini d'arêtes (edge). Il existe deux façons standard de représenter un graphe avec un alphabet fini Σ contenant au moins $\{0,1\}$, que nous décrivons ci-dessous. Étant donné un entier m, on note $\overline{m} \in \{0,1\}^*$ son codage en base deux.

Liste d'adjacence : Une représentation en liste d'adjacence de G code le graphe comme une liste l de longueur n, où le u-ième élément de la liste est la liste de tous les sommets v tels que $(u,v) \in E$.

Matrice d'adjacence : Une représentation en matrice d'adjacence de G code le graphe comme une matrice M carrée à n lignes et n colonnes, et à valeurs dans $\{0,1\}$, telle que M[u][v]=1 si et seulement si $(u,v)\in E$.



Question 2 Proposer un alphabet Σ pour représenter un graphe (que l'on pourrait utiliser pour les deux représentations).

Question 3 Donnez une représentation du graphe ci-dessus en liste d'adjacence et en matrice d'adjacence à l'aide de cet alphabet.

Question 4 Montrez qu'il existe une fonction logspace (i.e. qui peut être implémenté par une MT qui utilise un espace en $\log(n)$) qui à toute représentation d'un graphe G en liste d'adjacence associe une représentation de G en matrice d'adjacence.

Réciproquement montrez qu'il existe une fonction logspace qui à toute représentation d'un graphe G en matrice d'adjacence associe une représentation de G en liste d'adjacence.

Fonction LOGSPACE et L

Question 5 Montrer que toute machine de Turing déterministe qui calcule en espace logarithmique (c'est-à-dire telle que l'espace utilisé sur une entrée de taille n est au plus $\log n$), s'arrête après un nombre d'étapes polynomial. Qu'en est-il si l'espace pris est en $\log^k n$ pour un $k \geq 2$?

Question 6 Soient $h_1: L_1 \mapsto L_2$ et $h_2: L_2 \mapsto L_3$ deux fonctions calculables en espace logarithmique par des machines déterministes.

Montrer que la fonction $h_2 \circ h_1 : L_1 \mapsto L_3$ peut aussi être calculée en espace logarithmique par une machine déterministe.

Considérons un alphabet fini A. Pour une fonction partielle $f: A^* \to A^*$ défini sur son domaine dom f, on associe le langage :

$$D_f = \{ \langle x, i, a \rangle \in A^* \times \mathbb{N} \times A \mid x \in \mathsf{dom} \, f \text{ et } 0 < i \leq |f(x)| \text{ avec } a \text{ la } i\text{-eme lettre de } f(x) \}.$$

On suppose que i est représenté en binaire.

On dit qu'une fonction est calculable en espace logarithmique s'il existe une machine de Turing déterministe M_f qui, sur une entrée $x \in A^*$, termine et écrit f(x) sur sa bande de sortie en utilisant un espace $\log x$. Si f(x) n'est pas définit, la machine M_f doit atteindre un état rejetant.

Question 7 Montrer qu'une fonction totale f est calculable en espace logarithmique si et seulement si $D_f \in L = \mathsf{SPACE}(\log)$ et il existe un polynôme p tel que $|f(x)| \leq p(|x|)$ pour tout x de A^* .

Question 8 Peut-on retirer l'hypothèse de l'existence d'un tel polynôme p?

Question 9 Peut-on retirer l'hypothèse que la fonction f est totale?