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Priced Timed Games

Timed Automaton

with partition of states
between 2 players

+ reachability objective
+ rates in locations

+ costs over transitions

Semantics in terms of
infinite game with weights
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if v not reached

00
Cost of a play: i
total payoff up to v~ otherwise
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Strategies and objectives

Strategy for each player: mapping of finite runs to a delay and an action
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Strategies and objectives

Strategy for each player: mapping of finite runs to a delay and an action

Goal of player O: reach v and minimize the cost
Goal of player O: avoid / or, if not possible, maximize the cost

Main object of interest:

Val(/, v) = minimal cost player O can guarantee

Val(¢, v) = maximal cost player O can guarantee

What can players guarantee as a payoff? And design good strategies.
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F<kv: 3 a strategy in the PTG (priced timed game) for player O
reaching v with a cost < K7
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Brihaye, and Markey, 2006a], even with only non-negative costs and 3
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» PTGs with non-negative costs and strictly non-Zeno cost cycles or
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F<kv: 3 a strategy in the PTG (priced timed game) for player O
reaching v with a cost < K7

> 2—p|ayer PTGs: undecidable [Brihaye, Bruyere, and Raskin, 2005, Bouyer,
Brihaye, and Markey, 2006a], even with only non-negative costs and 3
clocks

» PTGs with non-negative costs and strictly non-Zeno cost cycles or
with one clock: exponential algorithm [Bouyer, Cassez, Fleury, and Larsen,
2004, Alur, Bernadsky, and Madhusudan, 2004, Bouyer, Larsen, Markey, and
Rasmussen, 2006b, Rutkowski, 2011, Hansen, Ibsen-Jensen, and Miltersen, 2013]

More complex with negative costs.

» F<x/ undecidable for 2 or more clocks and pseudo-polynomial
algorithm for One-clock Bi-valued PTG [Brihaye, Geeraerts, Krishna,
Manasa, Monmege, and Trivedi, 2014]

One-clock Bi-valued PTG: important restriction on the allowed rates of
locations
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nspired by other previous techniques for 1-clock PTGs?

[Hansen, Ibsen-Jensen, and Miltersen, 2013]: strategy improvement algorithm

[Bouyer, Larsen, Markey, and Rasmussen, 2006b, Rutkowski, 2011]: iterative elimination of locations

» precomputation: polynomial-time cascade of simplification of
1-clock PTGs into simple 1-clock PTGs (SPTGs)

> clock bounded by 1, no guards/invariants, no resets



Inspired by other previous techniques for 1-clock PTGs?

[Hansen, Ibsen-Jensen, and Miltersen, 2013]: strategy improvement algorithm

[Bouyer, Larsen, Markey, and Rasmussen, 2006b, Rutkowski, 2011]: iterative elimination of locations

» precomputation: polynomial-time cascade of simplification of
1-clock PTGs into simple 1-clock PTGs (SPTGs)

> clock bounded by 1, no guards/invariants, no resets

» for SPTGs: compute value functions Val(¥, x).

9
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Recursive elimination of states

Intuition from [Bouyer, Larsen, Markey, and Rasmussen, 2006b, Rutkowski, 2011]:

» Player O prefers to stay as long as possible in locations with
minimal price: add a final location allowing him to stay until the
end, and make the location urgent
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Recursive elimination of states

Intuition from [Bouyer, Larsen, Markey, and Rasmussen, 2006b, Rutkowski, 2011]:
» Player O prefers to stay as long as possible in locations with
minimal price: add a final location allowing him to stay until the
end, and make the location urgent
> Player [0 prefers to leave as soon as possible in locations with
minimal price: make the location urgent
Problem: intuition not always true... you may have to change decision!
Recursive algorithm + construction of the value functions from right
(x =1) to left (x =0)
Challenges with arbitrary weights:
» Proof of correctness does not generalise: initially two distinct proofs
for O and O
» Proof of termination does not generalise: difficult because of the
double recursion...
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Make a symmetric treatment of O and O

Theorem

PTGs are determined (Val = Val), and value functions are continuous
(over regions).

Determinacy follows from Gale-Stewart determinacy result.

7/12



Make a symmetric treatment of O and O

Theorem

PTGs are determined (Val = Val), and value functions are continuous
(over regions).

Determinacy follows from Gale-Stewart determinacy result.

Advantage: both players are dual...

7/12



Make a symmetric treatment of O and O

7/12

Theorem
PTGs are determined (Val = Val), and value functions are continuous
(over regions).

Determinacy follows from Gale-Stewart determinacy result.

Advantage: both players are dual...

Theorem
For every SPTG, all value functions are piecewise affine, with at most an
exponential number of cutpoints (in number of locations).



Make a symmetric treatment of O and O

7/12

Theorem
PTGs are determined (Val = Val), and value functions are continuous
(over regions).

Determinacy follows from Gale-Stewart determinacy result.

Advantage: both players are dual...

Theorem
For every SPTG, all value functions are piecewise affine, with at most an
exponential number of cutpoints (in number of locations).

For general 1-clock PTGs?
» removing guards and invariants: previously used techniques work!

> removing resets: previously, bound the number of resets...



Bounding the number of resets needed is not possible
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Bounding the number of resets needed is not possible

Player O can guarantee (i.e., ensure to be below) value € for all € > 0...
... but cannot obtain 0: hence, no optimal strategy...

. moreover, to obtain e, O needs to loop at least W + [1/loge] times
before reaching /!
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Current solution: Reset-acyclic 1-clock PTGs

exponential time algorithm for reset-acyclic 1-clock PTGs with
arbitrary weights
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Summary and Future Work

» Extension of iterative elimination for reset-acyclic 1-clock PTGs with
arbitrary weights

» Study of the value function: determination, upper and lower bound,
number of cutpoints. . .
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Summary and Future Work

» Extension of iterative elimination for reset-acyclic 1-clock PTGs with
arbitrary weights

» Study of the value function: determination, upper and lower bound,
number of cutpoints. . .

» Future work: final extension of the result for all 1-clock PTGs?

» Use the result for 1-clock to approximate/compute the value of
general PTGs with adequate structural properties

» Implementation and test of different algorithms on real instances

Thank you for your attention

10/12



References |

11/12

Rajeev Alur, Mikhail Bernadsky, and P. Madhusudan. Optimal reachability for
weighted timed games. In Proceedings of the 31st International Colloquium on
Automata, Languages and Programming (ICALP’'04), volume 3142 of Lecture
Notes in Computer Science, pages 122-133. Springer, 2004.

Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Optimal
strategies in priced timed game automata. In Proceedings of the 24th Conference
on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS'04), volume 3328 of Lecture Notes in Computer Science, pages 148-160.
Springer, 2004.

Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Improved undecidability results
on weighted timed automata. Information Processing Letters, 98(5):188-194,
2006a.

Patricia Bouyer, Kim G. Larsen, Nicolas Markey, and Jacob lllum Rasmussen. Almost
optimal strategies in one-clock priced timed games. In Proceedings of the 26th
Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS'06), volume 4337 of Lecture Notes in Computer Science, pages
345-356. Springer, 2006b.

Thomas Brihaye, Véronique Bruyere, and Jean-Frangois Raskin. On optimal timed
strategies. In Proceedings of the Third international conference on Formal
Modeling and Analysis of Timed Systems (FORMATS'05), volume 3829 of Lecture
Notes in Computer Science, pages 49—64. Springer, 2005.



References |l

Thomas Brihaye, Gilles Geeraerts, Shankara Narayanan Krishna, Lakshmi Manasa,
Benjamin Monmege, and Ashutosh Trivedi. Adding Negative Prices to Priced
Timed Games. In Proceedings of the 25th International Conference on Concurrency
Theory (CONCUR’13), volume 8704 of Lecture Notes in Computer Science, pages
560-575. Springer, 2014.

Thomas Dueholm Hansen, Rasmus Ibsen-Jensen, and Peter Bro Miltersen. A faster
algorithm for solving one-clock priced timed games. In Proceedings of the 24th
International Conference on Concurrency Theory (CONCUR’13), volume 8052 of
Lecture Notes in Computer Science, pages 531-545. Springer, 2013.

Michat Rutkowski. Two-player reachability-price games on single-clock timed
automata. In Proceedings of the Ninth Workshop on Quantitative Aspects of
Programming Languages (QAPL’11), volume 57 of Electronic Proceedings in
Theoretical Computer Science, pages 31-46, 2011.

12/12



