
Simple Priced Timed Games are not that simple

From FSTTCS 2015

Lefaucheux Engel
Inria Rennes, France

Thomas Brihaye (UMons), Gilles Geeraerts (ULB),
Axel Haddad (UMons), Benjamin Monmege (LIF Marseille)

September 7, 2016

1/12

Priced Timed Games

`1[x 6 1]

`2

[x 6 2]

`3

[x 6 2]

`4

[x 6 2]

`5

[x 6 2]

� `6

x > 0
x := 0

x 6 1

x 6 2

x < 1, x := 0

x > 1

x > 1
x := 0

x > 1
x := 0

x > 1

Timed Automaton
with partition of states

between 2 players
+ reachability objective

+ rates in locations
+ costs over transitions

Semantics in terms of
infinite game with weights

(`1, 0)
0.4,↘−−−−→(`4, 0.4)

0.6,→−−−−→(`5, 0)
1.5,←−−−−→(`4, 0)

1.1,→−−−−→(`5, 0)
2,↗−−−→(�, 2)

0.4 + 1 −3× 0.6 +1.5 −3× 1.1 +2× 2 + 2 = 3.8

(`1, 0)
0.2,↗−−−−→(`2, 0)

0.9,→−−−−→(`3, 0.9)
0.2,

	

−−−−→(`3, 0)
0.9,

	

−−−−→(`3, 0) · · ·
0.2 +0.9 −0.2 −0.9 · · · = +∞ (� not reached)

Cost of a play:

{
+∞ if � not reached

total payoff up to � otherwise

2/12

Priced Timed Games

1 `1[x 6 1]

2

`2

[x 6 2]

−1

`3

[x 6 2]

−3

`4

[x 6 2]

1

`5

[x 6 2]

� `6

x > 0
x := 0, 0

x 6 1,1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

Timed Automaton
with partition of states

between 2 players
+ reachability objective

+ rates in locations
+ costs over transitions

Semantics in terms of
infinite game with weights

(`1, 0)

0.4,↘−−−−→(`4, 0.4)
0.6,→−−−−→(`5, 0)

1.5,←−−−−→(`4, 0)
1.1,→−−−−→(`5, 0)

2,↗−−−→(�, 2)
0.4 + 1 −3× 0.6 +1.5 −3× 1.1 +2× 2 + 2 = 3.8

(`1, 0)
0.2,↗−−−−→(`2, 0)

0.9,→−−−−→(`3, 0.9)
0.2,

	

−−−−→(`3, 0)
0.9,

	

−−−−→(`3, 0) · · ·
0.2 +0.9 −0.2 −0.9 · · · = +∞ (� not reached)

Cost of a play:

{
+∞ if � not reached

total payoff up to � otherwise

2/12

Priced Timed Games

1 `1[x 6 1]

2

`2

[x 6 2]

−1

`3

[x 6 2]

−3

`4

[x 6 2]

1

`5

[x 6 2]

� `6

x > 0
x := 0, 0

x 6 1,1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

Timed Automaton
with partition of states

between 2 players
+ reachability objective

+ rates in locations
+ costs over transitions

Semantics in terms of
infinite game with weights

(`1, 0)
0.4,↘−−−−→(`4, 0.4)

0.6,→−−−−→(`5, 0)
1.5,←−−−−→(`4, 0)

1.1,→−−−−→(`5, 0)
2,↗−−−→(�, 2)

0.4 + 1 −3× 0.6 +1.5 −3× 1.1 +2× 2 + 2 = 3.8

(`1, 0)
0.2,↗−−−−→(`2, 0)

0.9,→−−−−→(`3, 0.9)
0.2,

	

−−−−→(`3, 0)
0.9,

	

−−−−→(`3, 0) · · ·
0.2 +0.9 −0.2 −0.9 · · · = +∞ (� not reached)

Cost of a play:

{
+∞ if � not reached

total payoff up to � otherwise

2/12

Priced Timed Games

1 `1[x 6 1]

2

`2

[x 6 2]

−1

`3

[x 6 2]

−3

`4

[x 6 2]

1

`5

[x 6 2]

� `6

x > 0
x := 0, 0

x 6 1,1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

Timed Automaton
with partition of states

between 2 players
+ reachability objective

+ rates in locations
+ costs over transitions

Semantics in terms of
infinite game with weights

(`1, 0)
0.4,↘−−−−→(`4, 0.4)

0.6,→−−−−→(`5, 0)

1.5,←−−−−→(`4, 0)
1.1,→−−−−→(`5, 0)

2,↗−−−→(�, 2)
0.4 + 1 −3× 0.6 +1.5 −3× 1.1 +2× 2 + 2 = 3.8

(`1, 0)
0.2,↗−−−−→(`2, 0)

0.9,→−−−−→(`3, 0.9)
0.2,

	

−−−−→(`3, 0)
0.9,

	

−−−−→(`3, 0) · · ·
0.2 +0.9 −0.2 −0.9 · · · = +∞ (� not reached)

Cost of a play:

{
+∞ if � not reached

total payoff up to � otherwise

2/12

Priced Timed Games

1 `1[x 6 1]

2

`2

[x 6 2]

−1

`3

[x 6 2]

−3

`4

[x 6 2]

1

`5

[x 6 2]

� `6

x > 0
x := 0, 0

x 6 1,1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

Timed Automaton
with partition of states

between 2 players
+ reachability objective

+ rates in locations
+ costs over transitions

Semantics in terms of
infinite game with weights

(`1, 0)
0.4,↘−−−−→(`4, 0.4)

0.6,→−−−−→(`5, 0)
1.5,←−−−−→(`4, 0)

1.1,→−−−−→(`5, 0)
2,↗−−−→(�, 2)

0.4 + 1 −3× 0.6 +1.5 −3× 1.1 +2× 2 + 2 = 3.8

(`1, 0)
0.2,↗−−−−→(`2, 0)

0.9,→−−−−→(`3, 0.9)
0.2,

	

−−−−→(`3, 0)
0.9,

	

−−−−→(`3, 0) · · ·
0.2 +0.9 −0.2 −0.9 · · · = +∞ (� not reached)

Cost of a play:

{
+∞ if � not reached

total payoff up to � otherwise

2/12

Priced Timed Games

1 `1[x 6 1]

2

`2

[x 6 2]

−1

`3

[x 6 2]

−3

`4

[x 6 2]

1

`5

[x 6 2]

� `6

x > 0
x := 0, 0

x 6 1,1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

Timed Automaton
with partition of states

between 2 players
+ reachability objective

+ rates in locations
+ costs over transitions

Semantics in terms of
infinite game with weights

(`1, 0)
0.4,↘−−−−→(`4, 0.4)

0.6,→−−−−→(`5, 0)
1.5,←−−−−→(`4, 0)

1.1,→−−−−→(`5, 0)
2,↗−−−→(�, 2)

0.4 + 1 −3× 0.6 +1.5 −3× 1.1 +2× 2 + 2 = 3.8

(`1, 0)
0.2,↗−−−−→(`2, 0)

0.9,→−−−−→(`3, 0.9)
0.2,

	

−−−−→(`3, 0)
0.9,

	

−−−−→(`3, 0) · · ·
0.2 +0.9 −0.2 −0.9 · · · = +∞ (� not reached)

Cost of a play:

{
+∞ if � not reached

total payoff up to � otherwise

2/12

Priced Timed Games

1 `1[x 6 1]

2

`2

[x 6 2]

−1

`3

[x 6 2]

−3

`4

[x 6 2]

1

`5

[x 6 2]

� `6

x > 0
x := 0, 0

x 6 1,1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

Timed Automaton
with partition of states

between 2 players
+ reachability objective

+ rates in locations
+ costs over transitions

Semantics in terms of
infinite game with weights

(`1, 0)
0.4,↘−−−−→(`4, 0.4)

0.6,→−−−−→(`5, 0)
1.5,←−−−−→(`4, 0)

1.1,→−−−−→(`5, 0)
2,↗−−−→(�, 2)

0.4 + 1 −3× 0.6 +1.5 −3× 1.1 +2× 2 + 2 = 3.8

(`1, 0)
0.2,↗−−−−→(`2, 0)

0.9,→−−−−→(`3, 0.9)
0.2,

	

−−−−→(`3, 0)
0.9,

	

−−−−→(`3, 0) · · ·
0.2 +0.9 −0.2 −0.9 · · · = +∞ (� not reached)

Cost of a play:

{
+∞ if � not reached

total payoff up to � otherwise

2/12

Priced Timed Games

1 `1[x 6 1]

2

`2

[x 6 2]

−1

`3

[x 6 2]

−3

`4

[x 6 2]

1

`5

[x 6 2]

� `6

x > 0
x := 0, 0

x 6 1,1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

Timed Automaton
with partition of states

between 2 players
+ reachability objective

+ rates in locations
+ costs over transitions

Semantics in terms of
infinite game with weights

(`1, 0)
0.4,↘−−−−→(`4, 0.4)

0.6,→−−−−→(`5, 0)
1.5,←−−−−→(`4, 0)

1.1,→−−−−→(`5, 0)
2,↗−−−→(�, 2)

0.4 + 1 −3× 0.6 +1.5 −3× 1.1 +2× 2 + 2 = 3.8

(`1, 0)
0.2,↗−−−−→(`2, 0)

0.9,→−−−−→(`3, 0.9)
0.2,

	

−−−−→(`3, 0)
0.9,

	

−−−−→(`3, 0) · · ·
0.2 +0.9 −0.2 −0.9 · · · = +∞ (� not reached)

Cost of a play:

{
+∞ if � not reached

total payoff up to � otherwise

2/12

Strategies and objectives

1 `1[x 6 1]

2

`2

[x 6 2]

−1

`3

[x 6 2]

−3

`4

[x 6 2]

1

`5

[x 6 2]

� `6

x > 0
x := 0, 0

x 6 1, 1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

Strategy for each player: mapping of finite runs to a delay and an action

Goal of player #: reach � and minimize the cost
Goal of player 2: avoid � or, if not possible, maximize the cost

Main object of interest:
Val(`, v) = minimal cost player # can guarantee
Val(`, v) = maximal cost player 2 can guarantee
What can players guarantee as a payoff? And design good strategies.

3/12

Strategies and objectives

1 `1[x 6 1]

2

`2

[x 6 2]

−1

`3

[x 6 2]

−3

`4

[x 6 2]

1

`5

[x 6 2]

� `6

x > 0
x := 0, 0

x 6 1, 1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

Strategy for each player: mapping of finite runs to a delay and an action

Goal of player #: reach � and minimize the cost
Goal of player 2: avoid � or, if not possible, maximize the cost

Main object of interest:
Val(`, v) = minimal cost player # can guarantee
Val(`, v) = maximal cost player 2 can guarantee
What can players guarantee as a payoff? And design good strategies.

3/12

Strategies and objectives

1 `1[x 6 1]

2

`2

[x 6 2]

−1

`3

[x 6 2]

−3

`4

[x 6 2]

1

`5

[x 6 2]

� `6

x > 0
x := 0, 0

x 6 1, 1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

Strategy for each player: mapping of finite runs to a delay and an action

Goal of player #: reach � and minimize the cost
Goal of player 2: avoid � or, if not possible, maximize the cost

Main object of interest:
Val(`, v) = minimal cost player # can guarantee
Val(`, v) = maximal cost player 2 can guarantee
What can players guarantee as a payoff? And design good strategies.

3/12

State of the art

F6K�: ∃ a strategy in the PTG (priced timed game) for player #
reaching � with a cost 6 K?

I 2-player PTGs: undecidable [Brihaye, Bruyère, and Raskin, 2005, Bouyer,

Brihaye, and Markey, 2006a], even with only non-negative costs and 3
clocks

I PTGs with non-negative costs and strictly non-Zeno cost cycles or
with one clock: exponential algorithm [Bouyer, Cassez, Fleury, and Larsen,

2004, Alur, Bernadsky, and Madhusudan, 2004, Bouyer, Larsen, Markey, and

Rasmussen, 2006b, Rutkowski, 2011, Hansen, Ibsen-Jensen, and Miltersen, 2013]

More complex with negative costs.

I F6K� undecidable for 2 or more clocks and pseudo-polynomial
algorithm for One-clock Bi-valued PTG [Brihaye, Geeraerts, Krishna,

Manasa, Monmege, and Trivedi, 2014]

One-clock Bi-valued PTG: important restriction on the allowed rates of
locations

4/12

State of the art

F6K�: ∃ a strategy in the PTG (priced timed game) for player #
reaching � with a cost 6 K?

I 2-player PTGs: undecidable [Brihaye, Bruyère, and Raskin, 2005, Bouyer,

Brihaye, and Markey, 2006a], even with only non-negative costs and 3
clocks

I PTGs with non-negative costs and strictly non-Zeno cost cycles or
with one clock: exponential algorithm [Bouyer, Cassez, Fleury, and Larsen,

2004, Alur, Bernadsky, and Madhusudan, 2004, Bouyer, Larsen, Markey, and

Rasmussen, 2006b, Rutkowski, 2011, Hansen, Ibsen-Jensen, and Miltersen, 2013]

More complex with negative costs.

I F6K� undecidable for 2 or more clocks and pseudo-polynomial
algorithm for One-clock Bi-valued PTG [Brihaye, Geeraerts, Krishna,

Manasa, Monmege, and Trivedi, 2014]

One-clock Bi-valued PTG: important restriction on the allowed rates of
locations

4/12

State of the art

F6K�: ∃ a strategy in the PTG (priced timed game) for player #
reaching � with a cost 6 K?

I 2-player PTGs: undecidable [Brihaye, Bruyère, and Raskin, 2005, Bouyer,

Brihaye, and Markey, 2006a], even with only non-negative costs and 3
clocks

I PTGs with non-negative costs and strictly non-Zeno cost cycles or
with one clock: exponential algorithm [Bouyer, Cassez, Fleury, and Larsen,

2004, Alur, Bernadsky, and Madhusudan, 2004, Bouyer, Larsen, Markey, and

Rasmussen, 2006b, Rutkowski, 2011, Hansen, Ibsen-Jensen, and Miltersen, 2013]

More complex with negative costs.

I F6K� undecidable for 2 or more clocks and pseudo-polynomial
algorithm for One-clock Bi-valued PTG [Brihaye, Geeraerts, Krishna,

Manasa, Monmege, and Trivedi, 2014]

One-clock Bi-valued PTG: important restriction on the allowed rates of
locations

4/12

State of the art

F6K�: ∃ a strategy in the PTG (priced timed game) for player #
reaching � with a cost 6 K?

I 2-player PTGs: undecidable [Brihaye, Bruyère, and Raskin, 2005, Bouyer,

Brihaye, and Markey, 2006a], even with only non-negative costs and 3
clocks

I PTGs with non-negative costs and strictly non-Zeno cost cycles or
with one clock: exponential algorithm [Bouyer, Cassez, Fleury, and Larsen,

2004, Alur, Bernadsky, and Madhusudan, 2004, Bouyer, Larsen, Markey, and

Rasmussen, 2006b, Rutkowski, 2011, Hansen, Ibsen-Jensen, and Miltersen, 2013]

More complex with negative costs.

I F6K� undecidable for 2 or more clocks and pseudo-polynomial
algorithm for One-clock Bi-valued PTG [Brihaye, Geeraerts, Krishna,

Manasa, Monmege, and Trivedi, 2014]

One-clock Bi-valued PTG: important restriction on the allowed rates of
locations

4/12

Inspired by other previous techniques for 1-clock PTGs?

[Hansen, Ibsen-Jensen, and Miltersen, 2013]: strategy improvement algorithm

[Bouyer, Larsen, Markey, and Rasmussen, 2006b, Rutkowski, 2011]: iterative elimination of locations

I precomputation: polynomial-time cascade of simplification of
1-clock PTGs into simple 1-clock PTGs (SPTGs)

I clock bounded by 1, no guards/invariants, no resets

I for SPTGs: compute value functions Val(`, x).

x1

9
v1(x)

x1

9

6
5

3

1
3

2
3

v2(x)

x1

8

6
5

3

1
3

2
3

v3(x)

x1

5

3

2
3

v4(x)

x1

5

v5(x)

1

2 4

53

⊥

r1 = 9

r2 = 3 r4 = 9

r5 = 0

r3 = 6

c(5,⊥) = 5

c(3,1) = 3

Figure 1: Example of an SPTG, showing value functions and an optimal strategy profile.

current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of

3

x1

9
v1(x)

x1

9

6
5

3

1
3

2
3

v2(x)

x1

8

6
5

3

1
3

2
3

v3(x)

x1

5

3

2
3

v4(x)

x1

5

v5(x)

1

2 4

53

⊥

r1 = 9

r2 = 3 r4 = 9

r5 = 0

r3 = 6

c(5,⊥) = 5

c(3,1) = 3

Figure 1: Example of an SPTG, showing value functions and an optimal strategy profile.

current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of

3

5/12

Inspired by other previous techniques for 1-clock PTGs?

[Hansen, Ibsen-Jensen, and Miltersen, 2013]: strategy improvement algorithm

[Bouyer, Larsen, Markey, and Rasmussen, 2006b, Rutkowski, 2011]: iterative elimination of locations

I precomputation: polynomial-time cascade of simplification of
1-clock PTGs into simple 1-clock PTGs (SPTGs)

I clock bounded by 1, no guards/invariants, no resets

I for SPTGs: compute value functions Val(`, x).

x1

9
v1(x)

x1

9

6
5

3

1
3

2
3

v2(x)

x1

8

6
5

3

1
3

2
3

v3(x)

x1

5

3

2
3

v4(x)

x1

5

v5(x)

1

2 4

53

⊥

r1 = 9

r2 = 3 r4 = 9

r5 = 0

r3 = 6

c(5,⊥) = 5

c(3,1) = 3

Figure 1: Example of an SPTG, showing value functions and an optimal strategy profile.

current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of

3

x1

9
v1(x)

x1

9

6
5

3

1
3

2
3

v2(x)

x1

8

6
5

3

1
3

2
3

v3(x)

x1

5

3

2
3

v4(x)

x1

5

v5(x)

1

2 4

53

⊥

r1 = 9

r2 = 3 r4 = 9

r5 = 0

r3 = 6

c(5,⊥) = 5

c(3,1) = 3

Figure 1: Example of an SPTG, showing value functions and an optimal strategy profile.

current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of

3

5/12

Recursive elimination of states

Intuition from [Bouyer, Larsen, Markey, and Rasmussen, 2006b, Rutkowski, 2011]:

I Player # prefers to stay as long as possible in locations with
minimal price: add a final location allowing him to stay until the
end, and make the location urgent

I Player 2 prefers to leave as soon as possible in locations with
minimal price: make the location urgent

Problem: intuition not always true... you may have to change decision!
Recursive algorithm + construction of the value functions from right
(x = 1) to left (x = 0)

Challenges with arbitrary weights:

I Proof of correctness does not generalise: initially two distinct proofs
for # and 2

I Proof of termination does not generalise: difficult because of the
double recursion...

6/12

Recursive elimination of states

Intuition from [Bouyer, Larsen, Markey, and Rasmussen, 2006b, Rutkowski, 2011]:

I Player # prefers to stay as long as possible in locations with
minimal price: add a final location allowing him to stay until the
end, and make the location urgent

I Player 2 prefers to leave as soon as possible in locations with
minimal price: make the location urgent

Problem: intuition not always true... you may have to change decision!
Recursive algorithm + construction of the value functions from right
(x = 1) to left (x = 0)

Challenges with arbitrary weights:

I Proof of correctness does not generalise: initially two distinct proofs
for # and 2

I Proof of termination does not generalise: difficult because of the
double recursion...

6/12

Recursive elimination of states

Intuition from [Bouyer, Larsen, Markey, and Rasmussen, 2006b, Rutkowski, 2011]:

I Player # prefers to stay as long as possible in locations with
minimal price: add a final location allowing him to stay until the
end, and make the location urgent

I Player 2 prefers to leave as soon as possible in locations with
minimal price: make the location urgent

Problem: intuition not always true... you may have to change decision!
Recursive algorithm + construction of the value functions from right
(x = 1) to left (x = 0)

Challenges with arbitrary weights:

I Proof of correctness does not generalise: initially two distinct proofs
for # and 2

I Proof of termination does not generalise: difficult because of the
double recursion...

6/12

Recursive elimination of states

Intuition from [Bouyer, Larsen, Markey, and Rasmussen, 2006b, Rutkowski, 2011]:

I Player # prefers to stay as long as possible in locations with
minimal price: add a final location allowing him to stay until the
end, and make the location urgent

I Player 2 prefers to leave as soon as possible in locations with
minimal price: make the location urgent

Problem: intuition not always true... you may have to change decision!
Recursive algorithm + construction of the value functions from right
(x = 1) to left (x = 0)

Challenges with arbitrary weights:

I Proof of correctness does not generalise: initially two distinct proofs
for # and 2

I Proof of termination does not generalise: difficult because of the
double recursion...

6/12

Make a symmetric treatment of # and 2

Theorem
PTGs are determined (Val = Val), and value functions are continuous
(over regions).

Determinacy follows from Gale-Stewart determinacy result.

Advantage: both players are dual...

Theorem
For every SPTG, all value functions are piecewise affine, with at most an
exponential number of cutpoints (in number of locations).

For general 1-clock PTGs?

I removing guards and invariants: previously used techniques work!

I removing resets: previously, bound the number of resets...

7/12

Make a symmetric treatment of # and 2

Theorem
PTGs are determined (Val = Val), and value functions are continuous
(over regions).

Determinacy follows from Gale-Stewart determinacy result.

Advantage: both players are dual...

Theorem
For every SPTG, all value functions are piecewise affine, with at most an
exponential number of cutpoints (in number of locations).

For general 1-clock PTGs?

I removing guards and invariants: previously used techniques work!

I removing resets: previously, bound the number of resets...

7/12

Make a symmetric treatment of # and 2

Theorem
PTGs are determined (Val = Val), and value functions are continuous
(over regions).

Determinacy follows from Gale-Stewart determinacy result.

Advantage: both players are dual...

Theorem
For every SPTG, all value functions are piecewise affine, with at most an
exponential number of cutpoints (in number of locations).

For general 1-clock PTGs?

I removing guards and invariants: previously used techniques work!

I removing resets: previously, bound the number of resets...

7/12

Make a symmetric treatment of # and 2

Theorem
PTGs are determined (Val = Val), and value functions are continuous
(over regions).

Determinacy follows from Gale-Stewart determinacy result.

Advantage: both players are dual...

Theorem
For every SPTG, all value functions are piecewise affine, with at most an
exponential number of cutpoints (in number of locations).

For general 1-clock PTGs?

I removing guards and invariants: previously used techniques work!

I removing resets: previously, bound the number of resets...

7/12

Bounding the number of resets needed is not possible

−1 0

1

�

x = 1, x := 0

W

x 6 1

x = 1

Player # can guarantee (i.e., ensure to be below) value ε for all ε > 0...

... but cannot obtain 0: hence, no optimal strategy...

... moreover, to obtain ε, # needs to loop at least W + d1/ log εe times
before reaching �!

8/12

Bounding the number of resets needed is not possible

−1 0

1

�

x = 1, x := 0

W

x 6 1

x = 1

Player # can guarantee (i.e., ensure to be below) value ε for all ε > 0...

... but cannot obtain 0: hence, no optimal strategy...

... moreover, to obtain ε, # needs to loop at least W + d1/ log εe times
before reaching �!

8/12

Bounding the number of resets needed is not possible

−1 0

1

�

x = 1, x := 0

W

x 6 1

x = 1

Player # can guarantee (i.e., ensure to be below) value ε for all ε > 0...

... but cannot obtain 0: hence, no optimal strategy...

... moreover, to obtain ε, # needs to loop at least W + d1/ log εe times
before reaching �!

8/12

Bounding the number of resets needed is not possible

−1 0

1

�

x = 1, x := 0

W

x 6 1

x = 1

Player # can guarantee (i.e., ensure to be below) value ε for all ε > 0...

... but cannot obtain 0: hence, no optimal strategy...

... moreover, to obtain ε, # needs to loop at least W + d1/ log εe times
before reaching �!

8/12

Current solution: Reset-acyclic 1-clock PTGs

exponential time algorithm for reset-acyclic 1-clock PTGs with
arbitrary weights

9/12

Summary and Future Work

Results
I Extension of iterative elimination for reset-acyclic 1-clock PTGs with

arbitrary weights

I Study of the value function: determination, upper and lower bound,
number of cutpoints. . .

I Future work: final extension of the result for all 1-clock PTGs?

I Use the result for 1-clock to approximate/compute the value of
general PTGs with adequate structural properties

I Implementation and test of different algorithms on real instances

Thank you for your attention

10/12

Summary and Future Work

Results
I Extension of iterative elimination for reset-acyclic 1-clock PTGs with

arbitrary weights

I Study of the value function: determination, upper and lower bound,
number of cutpoints. . .

I Future work: final extension of the result for all 1-clock PTGs?

I Use the result for 1-clock to approximate/compute the value of
general PTGs with adequate structural properties

I Implementation and test of different algorithms on real instances

Thank you for your attention

10/12

Summary and Future Work

Results
I Extension of iterative elimination for reset-acyclic 1-clock PTGs with

arbitrary weights

I Study of the value function: determination, upper and lower bound,
number of cutpoints. . .

I Future work: final extension of the result for all 1-clock PTGs?

I Use the result for 1-clock to approximate/compute the value of
general PTGs with adequate structural properties

I Implementation and test of different algorithms on real instances

Thank you for your attention

10/12

References I

Rajeev Alur, Mikhail Bernadsky, and P. Madhusudan. Optimal reachability for
weighted timed games. In Proceedings of the 31st International Colloquium on
Automata, Languages and Programming (ICALP’04), volume 3142 of Lecture
Notes in Computer Science, pages 122–133. Springer, 2004.

Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Optimal
strategies in priced timed game automata. In Proceedings of the 24th Conference
on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’04), volume 3328 of Lecture Notes in Computer Science, pages 148–160.
Springer, 2004.

Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Improved undecidability results
on weighted timed automata. Information Processing Letters, 98(5):188–194,
2006a.

Patricia Bouyer, Kim G. Larsen, Nicolas Markey, and Jacob Illum Rasmussen. Almost
optimal strategies in one-clock priced timed games. In Proceedings of the 26th
Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’06), volume 4337 of Lecture Notes in Computer Science, pages
345–356. Springer, 2006b.

Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On optimal timed
strategies. In Proceedings of the Third international conference on Formal
Modeling and Analysis of Timed Systems (FORMATS’05), volume 3829 of Lecture
Notes in Computer Science, pages 49–64. Springer, 2005.

11/12

References II

Thomas Brihaye, Gilles Geeraerts, Shankara Narayanan Krishna, Lakshmi Manasa,
Benjamin Monmege, and Ashutosh Trivedi. Adding Negative Prices to Priced
Timed Games. In Proceedings of the 25th International Conference on Concurrency
Theory (CONCUR’13), volume 8704 of Lecture Notes in Computer Science, pages
560–575. Springer, 2014.

Thomas Dueholm Hansen, Rasmus Ibsen-Jensen, and Peter Bro Miltersen. A faster
algorithm for solving one-clock priced timed games. In Proceedings of the 24th
International Conference on Concurrency Theory (CONCUR’13), volume 8052 of
Lecture Notes in Computer Science, pages 531–545. Springer, 2013.

Micha l Rutkowski. Two-player reachability-price games on single-clock timed
automata. In Proceedings of the Ninth Workshop on Quantitative Aspects of
Programming Languages (QAPL’11), volume 57 of Electronic Proceedings in
Theoretical Computer Science, pages 31–46, 2011.

12/12

