Specification and Verification of Diagnosis and Predictability in Probabilistic Systems

Nathalie Bertrand¹, Serge Haddad², Engel Lefaucheux^{1,2}

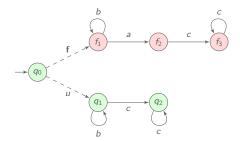
1 Inria, France 2 LSV, ENS Cachan & CNRS & Inria, France

Ínnia -

LTS: Labelled transition system.

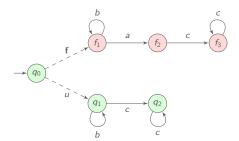
Diagnoser: must tell whether a fault \mathbf{f} occurred, based on observations.

Convergence hypothesis: no infinite sequence of unobservable events.



LTS: Labelled transition system.

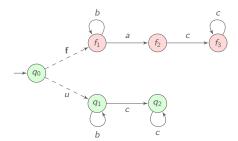
Diagnoser: must tell whether a fault **f** occurred, based on observations. *Convergence hypothesis*: no infinite sequence of unobservable events.



A run $\rho = q_0 \xrightarrow{u} q_1 \xrightarrow{c} q_2$ has an observation sequence $\mathcal{P}(\rho) = c$.

LTS: Labelled transition system.

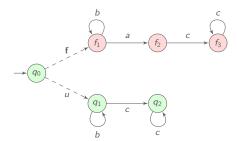
Diagnoser: must tell whether a fault **f** occurred, based on observations. *Convergence hypothesis*: no infinite sequence of unobservable events.



A run $\rho = q_0 \xrightarrow{u} q_1 \xrightarrow{c} q_2$ has an observation sequence $\mathcal{P}(\rho) = c$. **X** ac is surely faulty as $\mathcal{P}^{-1}(ac) = \{q_0 \xrightarrow{f} f_1 \xrightarrow{a} f_2 \xrightarrow{c} f_3\}.$

LTS: Labelled transition system.

Diagnoser: must tell whether a fault **f** occurred, based on observations. *Convergence hypothesis*: no infinite sequence of unobservable events.



A run $\rho = q_0 \xrightarrow{u} q_1 \xrightarrow{c} q_2$ has an observation sequence $\mathcal{P}(\rho) = c$. **X** ac is surely faulty as $\mathcal{P}^{-1}(ac) = \{q_0 \xrightarrow{f} f_1 \xrightarrow{a} f_2 \xrightarrow{c} f_3\}$. **?** b is ambiguous as $\mathcal{P}^{-1}(b) = \{q_0 \xrightarrow{f} f_1 \xrightarrow{b} f_1, q_0 \xrightarrow{u} q_1 \xrightarrow{b} q_1\}$.

Diagnosis Problems

Diagnoser requirements:

- **Soundness:** if a fault is claimed, a fault occurred.
- **Reactivity**: every fault will be detected.

Diagnosis Problems

Diagnoser requirements:

- **Soundness:** if a fault is claimed, a fault occurred.
- Reactivity: every fault will be detected.

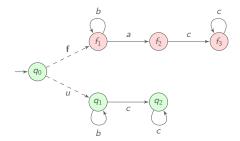
A decision problem (*diagnosability*): does there exist a diagnoser? A synthesis problem: how to build a diagnoser?

Diagnosis Problems

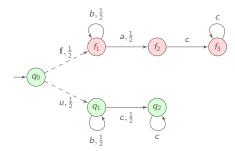
Diagnoser requirements:

- **Soundness:** if a fault is claimed, a fault occurred.
- Reactivity: every fault will be detected.

A decision problem (*diagnosability*): does there exist a diagnoser? A synthesis problem: how to build a diagnoser?

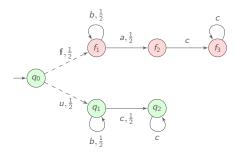


A sound but not reactive diagnoser : claiming a fault when a occurs.



[TT05] Thorsley and Teneketzis

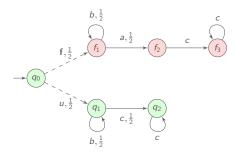
Diagnosability of stochastic discrete-event systems, IEEE TAC, 2005.



bⁿ ambiguous but...

[TT05] Thorsley and Teneketzis

Diagnosability of stochastic discrete-event systems, IEEE TAC, 2005.

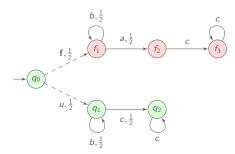


bⁿ ambiguous but...

 $\lim_{n\to\infty}\mathbb{P}(\mathbf{f}b^n)=0$

[TT05] Thorsley and Teneketzis

Diagnosability of stochastic discrete-event systems, IEEE TAC, 2005.



bⁿ ambiguous but...

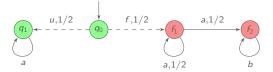
 $\lim_{n\to\infty}\mathbb{P}(\mathbf{f}b^n)=0$

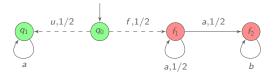
How to adapt soundness and reactivity?

[TT05] Thorsley and Teneketzis Diagnosability of stochastic discrete-event systems, IEEE TAC, 2005.

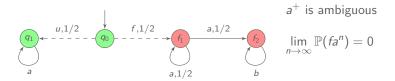
Outline

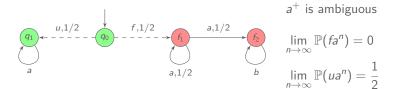
Outline

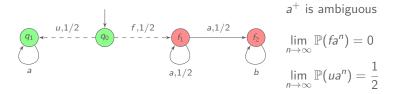




 a^+ is ambiguous

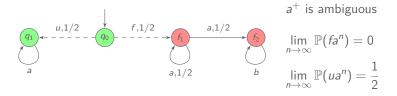






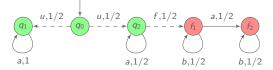
Two reactivity specifications:

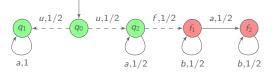
Detect a fault almost surely.



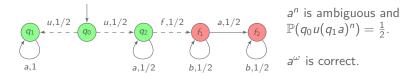
Two reactivity specifications:

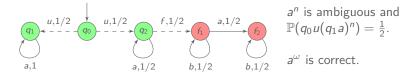
- Detect a fault almost surely.
- Detect if a run is faulty or correct almost surely.



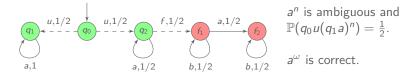


$$a^n$$
 is ambiguous and $\mathbb{P}(q_0 u(q_1 a)^n) = \frac{1}{2}.$





The probability of ambiguous sequences goes to 0 when the length goes to infinity.



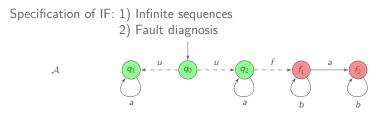
- The probability of ambiguous sequences goes to 0 when the length goes to infinity.
- ▶ An infinite sequence is almost surely non ambiguous.

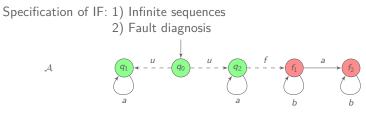
Four specifications of diagnosis

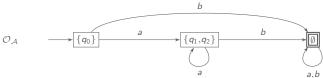
Diagnosability	All runs		Faulty runs
Finite prefixes	FA	$\Rightarrow \not \in$	FF
	↓ 1⁄ŕ	7	$\Downarrow \Uparrow^*$
Infinite sequences	IA	$\Rightarrow \not \in$	IF

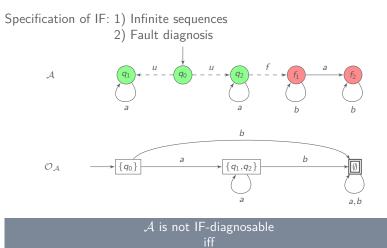
* assuming finitely-branching models

Outline





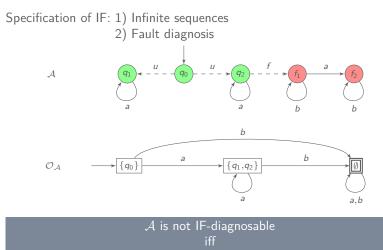




there exists a state (q, U) in a BSCC of $\mathcal{A} imes \mathcal{O}_\mathcal{A}$ with q faulty and $U
eq \emptyset.$

Specification and Verification of Diagnosis and Predictability in Probabilistic Systems

June 18 2014 - GT Vérif - 11

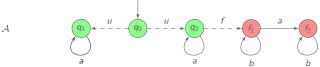


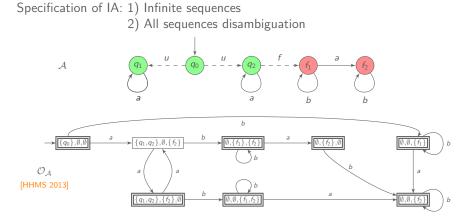
there exists a state (q,U) in a BSCC of $\mathcal{A} imes \mathcal{O}_\mathcal{A}$ with q faulty and $U
eq \emptyset$

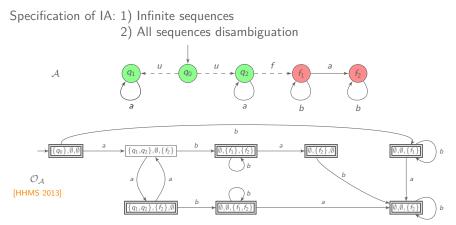
If \mathcal{A} is a IF-diagnosable pLTS with *n* correct states then $\mathcal{O}_{\mathcal{A}}$ is a IF-diagnoser of \mathcal{A} with at most 2^{*n*} states.

Specification of IA: 1) Infinite sequences

2) All sequences disambiguation







 $\begin{array}{l} \mathcal{A} \text{ is not IA-diagnosable iff} \\ \text{there exists a BSCC of } \mathcal{A} \times \mathcal{O}_{\mathcal{A}} \text{ where every state } (q, U, V, W) \text{ satisfies} \\ q \text{ faulty and } U \neq \emptyset \quad \text{or} \quad q \text{ correct and } W \neq \emptyset. \end{array}$

Outline

Diagnosability is in PSPACE

The IA/FA/IF-diagnosability problems are in PSPACE.

Diagnosability is in PSPACE

The IA/FA/IF-diagnosability problems are in PSPACE.

Sketch of proof

- \blacktriangleright relies on the characterisation on $\mathcal{A}\times\mathcal{O}_{\mathcal{A}}$
- avoids building the product
- uses Savitch's theorem for appropriate guesses

Outline

First step: We define and analyse a new universality notion.

 $\mathcal{L} \subseteq \Sigma^*$ is eventually universal if $\exists v \in \Sigma^*, v^{-1}\mathcal{L} = \Sigma^*$.

The eventual universality problem for NFA is PSPACE-hard.

First step: We define and analyse a new universality notion.

 $\mathcal{L} \subseteq \Sigma^*$ is eventually universal if $\exists v \in \Sigma^*, v^{-1}\mathcal{L} = \Sigma^*$.

The eventual universality problem for NFA is PSPACE-hard.

Second step: We reduce eventual universality to diagnosability.

The IA/FA/IF-diagnosability problems are PSPACE-hard.

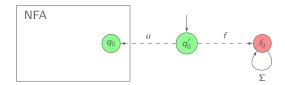
First step: We define and analyse a new universality notion.

 $\mathcal{L} \subseteq \Sigma^*$ is eventually universal if $\exists v \in \Sigma^*, v^{-1}\mathcal{L} = \Sigma^*$.

The eventual universality problem for NFA is PSPACE-hard.

Second step: We reduce eventual universality to diagnosability.

The IA/FA/IF-diagnosability problems are PSPACE-hard.



Specification and Verification of Diagnosis and Predictability in Probabilistic Systems

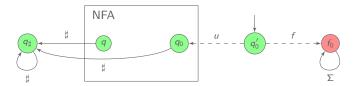
First step: We define and analyse a new universality notion.

 $\mathcal{L} \subseteq \Sigma^*$ is eventually universal if $\exists v \in \Sigma^*, v^{-1}\mathcal{L} = \Sigma^*$.

The eventual universality problem for NFA is PSPACE-hard.

Second step: We reduce eventual universality to diagnosability.

The IA/FA/IF-diagnosability problems are PSPACE-hard.



Comparison with diagnosability of non-stochastic systems

The IA/FA/IF-diagnosability problems are PSPACE-complete.

Comparison with diagnosability of non-stochastic systems

The IA/FA/IF-diagnosability problems are PSPACE-complete.

The diagnosability problem is in PTIME [Jiang/Huang/Chandra/Kumar-tac01].

Sketch of proof

- builds the product of the LTS with a copy restricted to correct states
- checks for SCC with faulty states in the first component

Comparison with diagnosability of non-stochastic systems

The IA/FA/IF-diagnosability problems are PSPACE-complete.

The diagnosability problem is in PTIME [Jiang/Huang/Chandra/Kumar-tac01].

Sketch of proof

- builds the product of the LTS with a copy restricted to correct states
- checks for SCC with faulty states in the first component

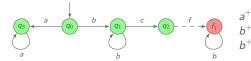
Erroneous adaptation to stochastic systems in [Chen/Kumar-tase13].

Specification and Verification of Diagnosis and Predictability in Probabilistic Systems

Outline

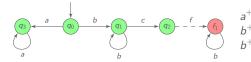
Predictor: tell whether a fault will occur, based on observations.

Predictor: tell whether a fault will occur, based on observations.



 $c \rightarrow q_2 - - f \rightarrow f_1$ $b^+ c$ surely eventually faulty b^+ almost surely eventually faulty

Predictor: tell whether a fault will occur, based on observations.



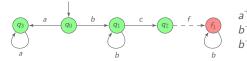
 $f \rightarrow f$ b^+c surely eventually faulty b^+ almost surely eventually faulty

Two notions of soundness:

- sure: if a fault is claimed, a fault will occur
- > almost-sure: if a fault is claimed, a fault will almost-surely occur

Reactivity: a fault is detected at least *k* steps before occurrence.

Predictor: tell whether a fault will occur, based on observations.



 a^+ never faulty b^+c surely eventually faulty b^+ almost surely eventually faulty

- surely 0-predictable
- almost surely 1-predictable
- not 2-predictable

Two notions of soundness:

- sure: if a fault is claimed, a fault will occur
- almost-sure: if a fault is claimed, a fault will almost-surely occur

Reactivity: a fault is detected at least *k* steps before occurrence.

Outline

Complexity of predictability

The (almost) sure predictability problem is NLOGSPACE-complete.

Complexity of predictability

The (almost) sure predictability problem is NLOGSPACE-complete.

Sketch of proof

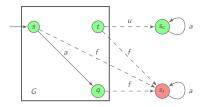
Upper bound: graph characterisation

Complexity of predictability

The (almost) sure predictability problem is NLOGSPACE-complete.

Sketch of proof

- **Upper bound:** graph characterisation
- ▶ Lower bound: reduction of reachability in acyclic graphs



Predictor synthesis

An (almost) surely k-predictable pLTS with n correct states admits an (almost) sure k-predictor of size 2ⁿ.

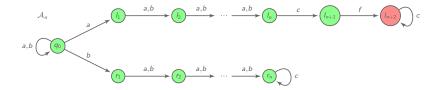
Construction similar to the previous observers.

Predictor synthesis

An (almost) surely k-predictable pLTS with n correct states admits an (almost) sure k-predictor of size 2ⁿ.

Construction similar to the previous observers.

 \mathcal{A}_n has 2n + 2 correct states and every (almost) sure 0-predictor of \mathcal{A}_n needs at least 2^n states.

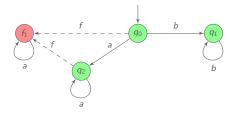


Specification and Verification of Diagnosis and Predictability in Probabilistic Systems

Outline

Prediagnosability

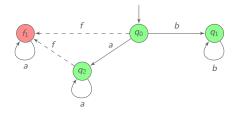
Prediagnoser: detects and foresees faults analysing past and future



- b^+ never faulty
- *a*⁺ almost surely eventually faulty

Prediagnosability

Prediagnoser: detects and foresees faults analysing past and future

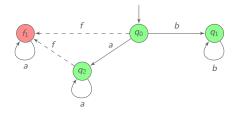


- b⁺ never faulty
- a^+ almost surely eventually faulty

Soundness: If a fault is claimed, a fault happened or (almost) surely will. Reactivity: Faults are almost surely claimed.

Prediagnosability

Prediagnoser: detects and foresees faults analysing past and future



- b^+ never faulty
- a^+ almost surely eventually faulty

Soundness: If a fault is claimed, a fault happened or (almost) surely will. Reactivity: Faults are almost surely claimed.

Prediagnosability is PSPACE-complete.

Specification and Verification of Diagnosis and Predictability in Probabilistic Systems

Conclusion: Foundation of stochastic diagnosis

Summary of contributions

- Investigation of semantical issues
- Introduction of prediagnosability
- Tight complexity bounds for diagnosability and diagnoser synthesis problems

Conclusion: Foundation of stochastic diagnosis

Summary of contributions

- Investigation of semantical issues
- Introduction of prediagnosability
- Tight complexity bounds for diagnosability and diagnoser synthesis problems

Future work

- Approximate diagnosis (relaxing soundness)
- Other paradigms related to partial observation (detectability, opacity, etc.)
- Space and time optimisation of observations