Goûter des Doctorants : Cryptocurrencies

Adrien Koutsos

January 29, 2018
1. Introduction

2. Quick Crypto

3. Lets Try!

4. Blockchain
 - Blockchain and Merkle Tree
 - Consensus Problem
 - Block Mining

5. Variants, Futur Changes

6. Conclusion
1 Introduction

2 Quick Crypto

3 Lets Try!

4 Blockchain
 - Blockchain and Merkle Tree
 - Consensus Problem
 - Block Mining

5 Variants, Futur Changes

6 Conclusion
Introduction

Cryptocurrency
- Money based on thin air: not backed by anything from the “real world”.
- Decentralized ledger: no authority says who has what.
- New currency tokens issued automatically, at a fixed rate.

Standard currency
- Money based on thin air: not backed by anything from the “real world”.
- Centralized system: banks and/or governments maintain the ledgers.
- New currency tokens issued by governments, depending on policies.
Introduction

- Bitcoin probably the first and most famous cryptocurrency.
- Other famous cryptocurrencies: Ethereum, Litecoin ...
- Lots of speculations, not so much applications:

Cryptocurrency market capitalizations (2017.06.29)

- Bitcoin $42.1 bln
- Ethereum $29.2 bln
- Ripple $10.2 bln
- Litecoin $2.1 bln
- Ethereum Classic $1.7 bln
- 700+ Others $18.6 bln

Source of data: https://coinmarketcap.com/all/views/all/ Capitalizations of tokens running on Ethereum or else where are excluded
1 Introduction

2 Quick Crypto

3 Lets Try!

4 Blockchain
 - Blockchain and Merkle Tree
 - Consensus Problem
 - Block Mining

5 Variants, Futur Changes

6 Conclusion
Cryptographic Hash Function

Definition

$H : \mathcal{M} \mapsto \{0; 1\}^\eta$ such that:

- **Hiding**: Given $H(x)$, computationally infeasible to find x.
- **Collision-Resistance**: Given x and $H(x)$, computationally infeasible to find $y \neq x$ such that $H(x) = H(y)$.

Formal Property

H is Collision-Resistant against Hidden-Key Attacks if for all PPTM A with oracle access we have:

$$\Pr \left[k : A^{H(\cdot,k)}(1^\eta) = (m_1, m_2) \land m_1 \neq m_2 \land H(m_1, k) = H(m_2, k) \right]$$

is negligible in η (k is drawn uniformly at random in $\{0, 1\}^\eta$).
Signature Scheme

Definition

\[
\begin{align*}
\text{sign} : & \mathcal{M} \times SK_\eta \mapsto \{0; 1\}^\kappa \\
\text{verify} : & \mathcal{M} \times \{0; 1\}^\kappa \times PK_\eta \mapsto \{0; 1\}
\end{align*}
\]

such that:

- \(\eta \) is the key length, \(\kappa \) the signature length.
- **Correction**: \(\text{verify}(m, \text{sign}(x, sk), pk) = 1 \).
- **Unforgeability**: Given \(m \) and \(\text{sign}(m, sk) \), computationally infeasible to find \(s \neq \text{sign}(m, sk) \) such that \(\text{verify}(m, s, pk) = 1 \).
Introduction

Quick Crypto

Let's Try!

Blockchain
- Blockchain and Merkle Tree
- Consensus Problem
- Block Mining

Variants, Future Changes

Conclusion
How to build a cryptocurrency

Naïve first approach
- **Identities**: Public signature keys.
- **Money transfer**: \(\text{sign(” IOU : Bob-to-Alice : 100”, sk_{Bob})} \)

How can Alice use this money?

Naïve second approach
- **Identities**: Public signature keys.
- **Money**: IOU messages.
- **Money transfer**:
 \(\text{sign(” IOU : Bob-to-Alice-from-Charlie : ” } \cdot m \cdot ” 100”, sk_{Bob}) \)
 where \(m \) is a IOU message from Charlie to Bob from _.

Double spending!
Obstacles to Cryptocurrencies

Obstacles
- Check identities of people: cryptographic signatures.
- Creating initial coins: actually pretty easy, and even helps.
- No double spending: consensus problem.
Consensus Problem

The problem

A finite number of agents A_1, \ldots, A_n need to have a *comon view* on some set of data, but:

- They communicate through an adversarial network (block messages, forge messages ...).
- Some agents may be compromised/corrupted.

Requirements

- **Asynchronous**: people come and leave all the time.
- **Validity**: if enough honest agent, consensus decision is the same for all honest agents.
- **Progress**: cannot DoS the cryptocurrency, and transactions eventually take place.
Theorem: Byzantine General Problem

If more than one third of the agent are corrupted, cannot guarantee all three properties.

Remark

Paxos well-known algorithm for consensus in non-adversarial network (just node failures considered).
Very complicated, no full formal analysis (I think), but works (variants used by Google, Microsoft, ...).
Introduction

Quick Crypto

Lets Try!

Blockchain
- Blockchain and Merkle Tree
- Consensus Problem
- Block Mining

Variants, Futur Changes

Conclusion
Blockchain

Definition
List of back-chained block, where each block contain data and the hash of the previous block.

- **Tamper-Resistance**: Given the head of a blockchain, you cannot tamper with any block of the chain.
Merkle Tree

Definition

A binary where internal nodes contain the hashes of its left and right child, and leaves contain some data.

- **Proof of membership:** in $\sim \log(n)$ space/time.
- **Proof of non-membership:** in $\sim \log(n)$ space/time, if sorted.
How Bitcoin works

Functioning

Network of nodes, each having a replica of the full blockchain (almost).
- Transactions are broadcasted through the network.
- Nodes collect the unpublished transactions into a block.
- Try to publish the block to extend the chain (details later).
- If receive a new valid block before publishing, go back to the beginning.

Details

- Block are represented using a Merkle Tree.
- Broadcast algorithm is the simplest imaginable (I think).
How to have consensus

Bitcoin reaches consensus through the following rule:

Always extend the longest chain.

View of a node

Remark

Transactions in the head block can disappear if a longer branch appears. Rule of thumb: a transaction is fully committed after 6 blocks.
How Bitcoin works

Functioning

Network of nodes, each having a replica of the full blockchain (almost).
- Transactions are broadcasted through the network.
- Nodes collect the unpublished transactions into a *block*.
- **Try to publish the block to extend the chain (details now).**
- If receive a new valid block before publishing, go back to the beginning.
Constraints

- Everybody can publish at any time, attack:
 - Send money to A.
 - Wait for 6 blocks, A transfers you what you bought.
 - Extend a previous block where you own the bitcoins.

 Being able to publish is rare and random.

- Block published too fast: forks all the time.
 Being able to publish is rare and random.

- Need incentives for people to host nodes.
 Nodes publishing are paid.

- Need incentives for nodes to be honest.
 Nodes publishing are paid *in the current branch.*
Block Mining: Proof of Work

Given a Merkle Tree representation of a set of transactions m, a previous block hash p, look for n such that $H(n \cdot p \cdot m)$ is in some small set.

- $H(n \cdot p \cdot m)$ starts with more than d zeros ($d \approx 60$).
- Difficulty recomputed every 2048 blocks (≈ 2 weeks) to be on average every 10 minutes.

10 minutes deemed large enough to avoid too much forking, and to have time to properly broadcast the block.
Block Mining

- Miner who find a block add to the transactions a reward for themselves.
- 50 Bitcoins initially, divided by 2 every 4 years (25 today).
- Therefore controlled inflation and coins creation (at most 21 millions Bitcoin, in 2140).
- Transactions can include a fee for the miner, if the block reward is not enough.
Mining In Practice

Block Mining
Initially, meant to be CPU mining: *one CPU, one vote* (I think).
Mining In Practice

Computing hashes is very parallelizable: GPU mining.
Mining In Practice

When the value of Bitcoin started to go up, ASIC (Application-specific integrated circuit) mining.
Mining In Practice

Block Mining Today

- Rentable only if using ASIC and cheap electricity (e.g. China).
- People group into mining pools to reduce variance.
- Very energy consuming: 82,810 MWh per day (≈ Marocco, or 2.8 millions US households).
- Number of Hashes per seconds: 12,132 Peta Hashes/second.

Source: digiconomist.net
1 Introduction

2 Quick Crypto

3 Let's Try!

4 Blockchain
 - Blockchain and Merkle Tree
 - Consensus Problem
 - Block Mining

5 Variants, Futur Changes

6 Conclusion
Mining In The Future

Reduce Energy Consumption

Mining power not proportional to computational power, but to:

- **Proof of Stack**: money you own (e.g. Ethereum soon?).
- **Proof of Space**: space you allocated (e.g. SpaceMint).
- **Proof of Useful Work**: miner solves PDE, protein folding ... (do not exists yet).
Concurrent Cryptocurrencies

Try to improve on Bitcoin

- **Litecoin**: Supposed to have ASIC resistant hash function (failed).
- **Ethereum**: Allows for a Turing-complete language for transactions. Lots of funny attacks (DAO: 50 millions $ stolen, Parity: 300 millions $ blocked).
A Word on Verification of Cryptocurrencies

Two approaches to formal proofs of cryptocurrencies

- **Byzantine style proofs**: assume more than \(x \) percents of honest nodes.

- **Game theoretic proofs**: show that we have a Nash Equilibrium. *(Sometimes false, e.g. mining pools)*
Introduction

Quick Crypto

Let's Try!

Blockchain
 - Blockchain and Merkle Tree
 - Consensus Problem
 - Block Mining

Variants, Futur Changes

Conclusion
Conclusion

What I talked about

- Introduced some cryptographic tools used in cryptocurrencies: hashes, signatures, blockchains, Merkle trees.
- Discussed the difficulties encountered when building a cryptocurrency: double spending, consensus problem.
- Explained how bitcoin works (all cryptocurrencies work in a similar way).

My personal opinion

- Proof of work is a nice idea (with horrible consequences in practice).
- Conceiving a system such that the incentives of the agents are to play by the rule is *fun* (Cf proof of stacks/space).
- Ethereum has at first sight lots of potentiel fun applications. Although to my knowledge, only gambling and financial products (e.g. ICO).
Thanks for your attention