Goûter des Doctorants : Cryptocurrencies

Adrien Koutsos

January 29, 2018

- Introduction
- Quick Crypto
- 3 Lets Try!
- Blockchain
 - Blockchain and Merkle Tree
 - Consensus Problem
 - Block Mining
- 5 Variants, Futur Changes
- 6 Conclusion

- Introduction
- Quick Crypto
- 3 Lets Try
- 4 Blockchain
 - Blockchain and Merkle Tree
 - Consensus Problem
 - Block Mining
- Variants, Futur Changes
- 6 Conclusion

Introduction

Cryptocurrency

- Money based on thin air: not backed by anything from the "real world".
- Decentralized ledger: no authority says who has what.
- New currency tokens issued automatically, at a fixed rate.

Standard currency

- Money based on thin air: not backed by anything from the "real world".
- Centralized system: banks and/or governements maintain the ledgers.
- New currency tokens issued by governments, depending on policies.

Adrien Koutsos

Introduction

- Bitcoin probably the first and most famous cryptocurrency.
- Other famous cryptocurrencies: Ethereum, Litecoin ...
- Lots of speculations, not so much applications:

- Introduction
- Quick Crypto
- 3 Lets Try
- 4 Blockchain
 - Blockchain and Merkle Tree
 - Consensus Problem
 - Block Mining
- Variants, Futur Changes
- 6 Conclusion

Cryptographic Hash Function

Definition

 $H: \mathcal{M} \mapsto \{0; 1\}^{\eta}$ such that:

- **Hiding:** Given H(x), computationally infeasible to find x.
- Collision-Resistance: Given x and H(x), computationally infeasible to find $y \neq x$ such that H(x) = H(y).

Formal Property

H is Collision-Resistant against Hidden-Key Attacks if for all PPTM $\mathcal A$ with oracle access we have:

$$\mathsf{Pr}\left[\mathsf{k}:\ \mathcal{A}^{H(\cdot,\mathsf{k})}(1^{\eta}) = (m_1,m_2) \land m_1 \neq m_2 \land H(m_1,\mathsf{k}) = H(m_2,\mathsf{k})\right]$$

is negligible in η (k is drawn uniformly at random in $\{0,1\}^{\eta}$).

Signature Scheme

Definition

$$\begin{split} \text{sign}: \mathcal{M} \times \mathcal{SK}_{\eta} &\mapsto \{0;1\}^{\kappa} \\ \text{verify}: \mathcal{M} \times \{0;1\}^{\kappa} \times \mathcal{PK}_{\eta} &\mapsto \{0;1\} \end{split}$$

such that:

- ullet η is the key length, κ the signature length.
- Correction: verify(m, sign(x, sk), pk) = 1.
- Unforgeability: Given m and sign(m, sk), computationally infeasible to find $s \neq sign(m, sk)$ such that verify(m, s, pk) = 1.

- Introduction
- Quick Crypto
- 3 Lets Try!
- 4 Blockchain
 - Blockchain and Merkle Tree
 - Consensus Problem
 - Block Mining
- 5 Variants, Futur Changes
- 6 Conclusion

How to build a cryptocurrency

Naïve first approach

- Identities: Public signature keys.
- Money transfer: sign("IOU: Bob-to-Alice: 100", sk_{Bob})

How can Alice use this money?

Naïve second approach

- Identities: Public signature keys.
- Money: IOU messages.
- Money transfer:

```
sign(" IOU: Bob-to-Alice-from-Charlie: " \cdot m \cdot" 100", sk<sub>Bob</sub>) where m is a IOU message from Charlie to Bob from _.
```

Double spending!

Obstacles to Cryptocurrencies

Obstacles

- Check identities of people: cryptographic signatures.
- Creating initial coins: actually pretty easy, and even helps.
- No double spending: consensus problem.

Consensus Problem

The problem

A finite number of agents A_1, \ldots, A_n need to have a *comon view* on some set of data, but:

- They communicate through an adversarial network (block messages, forge messages . . .).
- Some agents may be compromised/corrupted.

Requirements

- Asynchronous: people come and leave all the time.
- Validity: if enough honest agent, consensus decision is the same for all honest agents.
- **Progress:** cannot DoS the cryptocurrency, and transactions eventualy take place.

Consensus Problem

Theorem: Byzantin General Problem

If more than *one third* of the agent are corrupted, cannot guarrantee all three properties.

Remark

Paxos well-known algorithm for consensus in non-adversarial network (just node failures considered).

Very complicated, no full formal analysis (I think), but works (variants used by Google, Microsoft, ...).

- Introduction
- Quick Crypto
- 3 Lets Try!
- Blockchain
 - Blockchain and Merkle Tree
 - Consensus Problem
 - Block Mining
- 5 Variants, Futur Changes
- 6 Conclusion

Blockchain

Definition

List of back-chained block, where each block contain data and the hash of the previous block.

• Tamper-Resistance: Given the head of a blockchain, you cannot tamper with any block of the chain.

Merkle Tree

Definition

A binary where internal nodes contain the hashes of its left and right child, and leaves contain some data.

- **Proof of membership:** in $\sim \log(n)$ space/time.
- **Proof of non-membership:** in $\sim \log(n)$ space/time, if *sorted*.

How Bitcoin works

Functioning

Network of nodes, each having a replica of the full blockchain (almost).

- Transactions are broadcasted through the network.
- Nodes collect the unpublished transactions into a block.
- Try to publish the block to extend the chain (details later).
- If receive a new valid block before publishing, go back to the beginning.

Details

- Block are represented using a Merkle Tree.
- Broadcast algorithm is the simplest imaginable (I think).

How to have consensus

Bitcoin reaches consensus through the following rule:

Always extend the longest chain.

Remark

Transactions in the head block can disappear if a longer branch appears. Rule of thumb: a transaction is fully committed after 6 blocks.

How Bitcoin works

Functioning

Network of nodes, each having a replica of the full blockchain (almost).

- Transactions are broadcasted through the network.
- Nodes collect the unpublished transactions into a block.
- Try to publish the block to extend the chain (details now).
- If receive a new valid block before publishing, go back to the beginning.

Block Publishing

Constraints

- Everybody can publish at ant time, attack:
 - Send money to A.
 - Wait for 6 blocks, A transfer you what you bought.
 - Extend a previous block where you own the bitcoins.

Being able to publish is rare and random.

- Block published too fast: forks all the time.
 Being able to publish is rare and random.
- Need incentives for people to host nodes.
 Nodes publishing are paid.
- Need incentives for nodes to be honest.
 Nodes publishing are paid in the current branch.

Block Publishing

Block Mining: Proof of Work

Given a Merkle Tree representation of a set of transactions m, a previous block hash p, look for n such that $H(n \cdot p \cdot m)$ is in some small set.

- $H(n \cdot p \cdot m)$ starts with more than d zeros $(d \approx 60)$.
- \bullet Difficuty recomputed every 2048 blocks (\approx 2 weeks) to be on average every 10 minutes.
 - 10 minutes deemed large enough to avoid too much forking, and to have time to properly broadcast the block.

Block Publishing

Block Mining

- Miner who find a block add to the transactions a reward for themselves.
- 50 Bitcoins initially, divided by 2 every 4 years (25 today).
- Therefore controlled inflation and coins creation (at most 21 millions Bitcoin, in 2140).
- Transactions can include a fee for the miner, if the block reward is not enough.

Block Mining

Initially, meant to be CPU mining: one CPU, one vote (I think).

Computing hashes is very paralellizable: GPU mining.

When the value of Bitcoin started to go up, ASIC (*Application-specific integrated circuit*) mining.

Block Mining Today

- Rentable only if using ASIC and cheap electricity (e.g. China).
- People group into mining pools to reduce variance.
- Very energy consuming: 82 810 MWh per day (\approx Marocco, or 2.8 millions US households).
- Number of Hashes per seconds: 12,132 Peta Hashes/second.

Source: digiconomist.net

- Introduction
- Quick Crypto
- Lets Try!
- Blockchair
 - Blockchain and Merkle Tree
 - Consensus Problem
 - Block Mining
- 5 Variants, Futur Changes
- 6 Conclusion

Mining In The Future

Reduce Energy Consumption

Mining power not proportional to computational power, but to:

- Proof of Stack: money you own (e.g. Ethereum soon?).
- Proof of Space: space you allocated (e.g. SpaceMint).
- Proof of Useful Work: miner solves PDE, protein folding ... (do not exists yet).

Concurrent Cryptocurrencies

Try to improve on Bitcoin

- Litecoin: Supposed to have ASIC resistant hash function (failed).
- Ethereum: Allows for a Turing-complete language for transactions. Lots of funny attacks (DAO: 50 millions \$ stolen, Parity: 300 millions \$ blocked).

A Word on Verification of Cryptocurrencies

Two approaches to formal proofs of cryptocurrencies

- Byzantine style proofs: assume more than x percents of honest nodes.
- Game theoretic proofs: show that we have a Nash Equilibrium. (Sometimes false, e.g. mining pools)

- Introduction
- Quick Crypto
- Lets Try!
- Blockchair
 - Blockchain and Merkle Tree
 - Consensus Problem
 - Block Mining
- Variants, Futur Changes
- 6 Conclusion

Conclusion

What I talked about

- Introduced some cryptographic tools used in cryptocurrencies: hashes, signatures, blockchains, Merkle trees.
- Discussed the difficulties encountered when building a cryptocurrency: double spending, consensus problem.
- Explained how bitcoin works (all cryptocurrencies work in a similar way).

My personal opinion

- Proof of work is a nice idea (with horrible consequences in practice).
- Conceiving a system such that the incentives of the agents are to play by the rule is *fun* (Cf proof of stacks/space).
- Ethereum has at first sight lots of potentiel fun applications. Although to my knowledge, only gambling and financial products (e.g. ICO).

Thanks for your attention