The 5G-AKA Authentication Protocol Privacy

Adrien Koutsos LVS, ENS Paris-Saclay

January 18, 2019

Adrien Koutsos

5G-AKA Privacy

January 18, 2019 1 / 43

1 The 4G-AKA and 5G-AKA Protocols

- The 4G-AKA Protocol
- The IMSI Catcher Attack
- The 5G-AKA Protocol
- Unlinkability Attacks Against 5G-AKA

2 The AKA⁺ Protocol

- Design Constraints
- Key Ideas
- The AKA⁺ Protocol
- **3** Security Proofs
 - σ -Unlinkability
 - Modeling in the Bana-Comon Model
 - Theorem

4 Conclusion

1 The 4G-AKA and 5G-AKA Protocols

- The 4G-AKA Protocol
- The IMSI Catcher Attack
- The 5G-AKA Protocol
- Unlinkability Attacks Against 5G-AKA

2 The AKA⁺ Protocol

- Design Constraints
- Key Ideas
- The AKA⁺ Protocol

3 Security Proofs

- σ -Unlinkability
- Modeling in the Bana-Comon Model
- Theorem

4 Conclusion

The Authentication and Key Agreement Protocol

The Protocol

AKA is a key exchange protocol between:

- The user equipment (UE): the mobile phone.
- The serving <u>network</u> (SN): the antenna.
- The home <u>network</u> (HN): the service provider (Free, Orange, SFR ...)

The Authentication and Key Agreement Protocol

The Protocol

AKA is a key exchange protocol between:

- The user equipment (UE): the mobile phone.
- The serving <u>network</u> (SN): the antenna.
- The home <u>network</u> (HN): the service provider (Free, Orange, SFR ...)

Some security goal of $\ensuremath{\operatorname{AKA}}$

• Mutual authentication between the user (UE) and the network (HN).

Some security goal of AKA

- Mutual authentication between the user (UE) and the network (HN).
- Privacy properties:
 - Confidentiality of the user identity (ID).
 - Unlinkability of the user.

Some security goal of AKA

- Mutual authentication between the user (UE) and the network (HN).
- Privacy properties:
 - Confidentiality of the user identity (ID).
 - Unlinkability of the user.

Actually, there are other security goals

- Authentication of the antenna by the user.
- Authentication of the antenna by the network.
- Authentication of the user by the antenna.

· · · ·

Some security goal of AKA

- Mutual authentication between the user (UE) and the network (HN).
- Privacy properties:
 - Confidentiality of the user identity (ID).
 - Unlinkability of the user.

Actually, there are other security goals

- Authentication of the antenna by the user.
- Authentication of the antenna by the network.
- Authentication of the user by the antenna.

· · · ·

Protocol Modeling

Protocol Modeling

We focus on:

- Mutual authentication between the user (UE) and the network (HN).
- Unlinkability of the user.

Protocol Modeling

We focus on:

- Mutual authentication between the user (UE) and the network (HN).
- Unlinkability of the user.
- \implies We do not model the antenna: we have a two party protocol.

Pseudo Random Number Generation

On the user side: all crypto primitives are computed in the SIM.Hardware PRNG is expensive/slow.

Pseudo Random Number Generation

- On the user side: all crypto primitives are computed in the SIM.
- Hardware PRNG is expensive/slow.
- \Rightarrow In 4G-AKA, no PRNG on the mobile phone.

Pseudo Random Number Generation

- On the user side: all crypto primitives are computed in the SIM.
- Hardware PRNG is expensive/slow.
- \Rightarrow In 4G-AKA, no PRNG on the mobile phone.

Cryptographic Primitives

- Asymmetric encryption requires randomness.
- \Rightarrow 4G-AKA uses only symmetric one-way functions.

Authentication

Authentication protocols need to prevent message replays. In $\rm 4G\textsc{-}AKA$:

Authentication

Authentication protocols need to prevent message replays. In 4G-AKA:

- The antenna uses a random challenge.
- The mobile phone uses a sequence number SQN:

Authentication

Authentication protocols need to prevent message replays. In 4G-AKA:

- The antenna uses a random challenge.
- The mobile phone uses a sequence number SQN:
 - Incremented after each successful session.
 - \blacksquare Tracked by the user and the antenna (${\rm SQN}_{\rm u}$ and ${\rm SQN}_{\rm N}).$
 - \Rightarrow De-synchronization possible.

Not confidentiality of the user identity

The ID is sent in plain text!

Not confidentiality of the user identity

The ID is sent in plain text!

4G-AKA solution

Use a temporary identity TMP-ID instead of the permanent identity ID:

- The network has a mapping from TMP-IDs to IDs.
- **Each** TMP-ID should be used at most once.
- The network assigns new TMP-ID after each successful session.

Confidentiality of the user identity

Once a temporary identity is set up, the ID is protected if:

- The protocol does not fail.
- The adversary is a passive adversary.

Confidentiality of the user identity

Once a temporary identity is set up, the ID is protected if:

- The protocol does not fail.
- The adversary is a passive adversary.
- \implies This is not realistic!

The IMSI Catcher Attack [Strobel, 2007]

The IMSI Catcher Attack [Strobel, 2007]

Why this is a major attack

- Reliable: the attack always works.
- **Easy to deploy**: only need an antenna.
- Large scale: not targeted.

The 5G-AKA protocol

5G-AKA is the next version of AKA (drafts are available [3GPP, 2018]).

The 5G-AKA protocol

5G-AKA is the next version of AKA (drafts are available [3GPP, 2018]).

3GPP fix for 5G-AKA

Simply encrypt the permanent identity by sending $\{ID\}_{pk_{v}}$

Is it enough?

Is it enough?

For confidentiality of the ${\rm ID},$ yes.

Is it enough?

For confidentiality of the ID, yes.

For unlinkability, no.
Linkability Attack

Unlinkability attack

The adversary knows if it interacted with ID_t or ID'.

Adrien Koutsos

5G-AKA Privacy

January 18, 2019 18 / 43

Unlinkability attack

The adversary knows if it interacted with ID_t or ID'.

Adrien Koutsos

5G-AKA Privacy

The $\ensuremath{\mathsf{PRIV}}\xspace{-}\ensuremath{\mathsf{AKA}}$ Protocol

The authors of [Fouque et al., 2016] propose a new protocol, $\ensuremath{\mathsf{PRIV}}\xspace{-}\operatorname{AKA}$ (claimed unlinkable).

The $\ensuremath{\mathsf{PRIV}}\xspace{-}\ensuremath{\mathsf{AKA}}$ Protocol

The authors of [Fouque et al., 2016] propose a new protocol, PRIV-AKA (claimed unlinkable).

Unlinkability Attack (four sessions)

- **Run** a session but keep the last message t_1 .
- Re-synchronize the user and the network.

The $\ensuremath{\mathsf{PRIV}}\xspace{-}\ensuremath{\mathsf{AKA}}$ Protocol

The authors of [Fouque et al., 2016] propose a new protocol, PRIV-AKA (claimed unlinkable).

Unlinkability Attack (four sessions)

- **Run** a session but keep the last message t_1 .
- Re-synchronize the user and the network.
- Re-iterate the last two steps to get a second message t_2 .

The $\ensuremath{\mathsf{PRIV}}\xspace{-}\ensuremath{\mathsf{AKA}}\xspace$ Protocol

The authors of [Fouque et al., 2016] propose a new protocol, PRIV-AKA (claimed unlinkable).

Unlinkability Attack (four sessions)

- **Run** a session but keep the last message t_1 .
- Re-synchronize the user and the network.
- Re-iterate the last two steps to get a second message t_2 .
- Send both t_1 and t_2 , which increments SQN_N by two.

The $\ensuremath{\mathsf{PRIV}}\xspace{-}\ensuremath{\mathsf{AKA}}\xspace$ Protocol

The authors of [Fouque et al., 2016] propose a new protocol, PRIV-AKA (claimed unlinkable).

Unlinkability Attack (four sessions)

- Run a session but keep the last message t_1 .
- Re-synchronize the user and the network.
- **R**e-iterate the last two steps to get a second message t_2 .
- Send both t_1 and t_2 , which increments SQN_N by two.
- The user is permanently de-synchronized ⇒ unlinkability attack.

Objective

Objective

Design a modified version of ${\rm AKA},$ called ${\rm AKA}^+,$ such that:

Provides some form of unlinkability.

Objective

Objective

Design a modified version of ${\rm AKA},$ called ${\rm AKA}^+,$ such that:

- Provides some form of unlinkability.
- Satisfies the design and efficiency constraints of 5G-AKA.

Objective

Objective

Design a modified version of ${\rm AKA},$ called ${\rm AKA}^+,$ such that:

- Provides some form of unlinkability.
- Satisfies the design and efficiency constraints of 5G-AKA.
- Is proved secure.

1 The 4G-AKA and 5G-AKA Protocols

- The 4G-AKA Protocol
- The IMSI Catcher Attack
- The 5G-AKA Protocol
- Unlinkability Attacks Against 5G-AKA

2 The AKA⁺ Protocol

- Design Constraints
- Key Ideas
- The AKA⁺ Protocol

3 Security Proofs

- σ -Unlinkability
- Modeling in the Bana-Comon Model
- Theorem

4 Conclusion

Random Number Generation in $\rm 5G\text{-}AKA$

Random Number Generation by the User

In $\rm 5G\text{-}AKA$, the user generates a random number only:

- If no TMP-ID is assigned.
- In the session following a de-synchronization.

The AKA⁺ Protocol

Design Constraints

 AKA^+ should be as efficient as the 5G-AKA:

Random number generation (user): at most one nonce per session, and only for re-synchronization or if no TMP-ID is assigned.

The AKA⁺ Protocol

Design Constraints

 AKA^+ should be as efficient as the 5G-AKA:

- Random number generation (user): at most one nonce per session, and only for re-synchronization or if no TMP-ID is assigned.
- The user can use only one-way functions and asymmetric *encryption*.

The AKA⁺ Protocol

Design Constraints

 AKA^+ should be as efficient as the 5G-AKA:

- Random number generation (user): at most one nonce per session, and only for re-synchronization or if no TMP-ID is assigned.
- The user can use only one-way functions and asymmetric *encryption*.
- Network complexity: only three messages per session.

Key Ideas Behind ${\rm A}{\rm K}{\rm A}^+$

Key Ideas Behind AKA⁺

- Postpone re-synchronization to the next session: $\{ \langle ID, SQN_U \rangle \}_{pk_u}$.
 - No re-synchronization message \implies no failure message attack.
 - No extra randomness for the user.

Key Ideas Behind AKA⁺

- Postpone re-synchronization to the next session: $\{ \langle ID, SQN_U \rangle \}_{pk_u}$.
 - No re-synchronization message ⇒ no failure message attack.
 - No extra randomness for the user.

Add a challenge n from the HN when using the permanent identity.

Architecture of AKA⁺

AKA⁺ Sub-Protocols

- **ID sub-protocol**:
 - is initiated by the HN with a challenge \mathbf{n} .
 - uses the encrypted permanent identity.
 - allows to re-synchronize the UE and the HN.

 ${\rm ID} \,\, {\rm Sub-Protocol}$

Architecture of AKA⁺

AKA⁺ Sub-Protocols

- ID sub-protocol:
 - is initiated by the HN with a challenge \mathbf{n} .
 - uses the encrypted permanent identity.
 - allows to re-synchronize the UE and the HN.
- TMP-ID sub-protocol:
 - is initiated by the UE.
 - uses a temporary identity.

ID Sub-Protocol

 ${\rm TMP}\text{-}{\rm ID}~Sub\text{-}Protocol$

Architecture of AKA⁺

AKA⁺ Sub-Protocols

- ID sub-protocol:
 - is initiated by the HN with a challenge \mathbf{n} .
 - uses the encrypted permanent identity.
 - allows to re-synchronize the UE and the HN.
- TMP-ID sub-protocol:
 - is initiated by the UE.
 - uses a temporary identity.
- ASSIGN-TMP-ID **sub-protocol**:
 - assigns a fresh temporary identity to the UE.

ID Sub-Protocol

ID Sub-Protocol

The ASSIGN-TMP-ID Sub-Protocol

1 The 4G-AKA and 5G-AKA Protocols

- The 4G-AKA Protocol
- The IMSI Catcher Attack
- The 5G-AKA Protocol
- Unlinkability Attacks Against 5G-AKA

2 The AKA⁺ Protocol

- Design Constraints
- Key Ideas
- The AKA⁺ Protocol
- **3** Security Proofs
 - σ -Unlinkability
 - Modeling in the Bana-Comon Model
 - Theorem

4 Conclusion

Security Proofs

Objective

Formally prove that AKA⁺ satisfies:

- mutual authentication.
- unlinkability.

Security Proofs

Security Proofs

Objective

Formally prove that AKA⁺ satisfies:

- mutual authentication.
- unlinkability $\implies \sigma$ -unlinkability.

σ -Unlinkability

High level idea: show privacy only for a subset of the standard unlinkability game scenarios.

σ -Unlinkability

High level idea: show privacy only for a subset of the standard unlinkability game scenarios.

- Game-based definition (like standard unlinkability).
- Parametric property (σ) .
- In general, weaker than unlinkability.
- Allow to precisely quantify privacy guarantees.

Two Indistinguishable Executions

Two Indistinguishable Executions

Two Indistinguishable Executions

Two Indistinguishable Executions

σ -Unlinkability

Efficiency vs Privacy

There is a trade-off between:

- **Efficiency:** the TMP-ID sub-protocol is faster.
- Privacy: the ID sub-protocol provides some privacy.

σ -Unlinkability

Efficiency vs Privacy

There is a trade-off between:

- **Efficiency:** the TMP-ID sub-protocol is faster.
- Privacy: the ID sub-protocol provides some privacy.

Remark

- If we use only the ID sub-protocol, we get standard unlinkability.
- All previous attacks are also σ -unlinkability attacks.

The Bana-Comon Model [Bana and Comon-Lundh, 2014] The proof is in the Bana-Comon unlinkability model:

Messages are modeled by (first-order) terms.

The Bana-Comon Model [Bana and Comon-Lundh, 2014]

The proof is in the Bana-Comon unlinkability model:

- Messages are modeled by (first-order) terms.
- A security property $P \sim Q$ is modeled by a formula $\vec{u}_P \sim \vec{u}_Q$.

The Bana-Comon Model [Bana and Comon-Lundh, 2014]

The proof is in the Bana-Comon unlinkability model:

- Messages are modeled by (first-order) terms.
- A security property $P \sim Q$ is modeled by a formula $\vec{u}_P \sim \vec{u}_Q$.
- Implementation assumptions and cryptographic hypothesis are modeled by axioms Ax.

The Bana-Comon Model [Bana and Comon-Lundh, 2014]

The proof is in the Bana-Comon unlinkability model:

- Messages are modeled by (first-order) terms.
- A security property $P \sim Q$ is modeled by a formula $\vec{u}_P \sim \vec{u}_Q$.
- Implementation assumptions and cryptographic hypothesis are modeled by axioms Ax.
- We have to show that $Ax \models \vec{u}_P \sim \vec{u}_Q$.

Messages and State

Symbolic trace of actions τ.
 Example: τ = UE_A, HN, UE_B, UE_A.

Messages and State

- Symbolic trace of actions τ.
 Example: τ = UE_A, HN, UE_B, UE_A.
- **Symbolic frame** ϕ_{τ} : sequences of messages observed by the attacker.
- **Symbolic state** σ_{τ} : current state of the users and the network.

$$\sigma_{\tau}^{\mathsf{up}} \equiv \begin{cases} \\ \mathsf{b}\text{-auth}_{\mathsf{u}} \mapsto \mathbf{g}(\phi_{\tau}^{\mathsf{in}}) \end{cases} \end{cases}$$

 $t_{\tau}^{\mathsf{enc}} \equiv \{ \langle \mathrm{ID}, \sigma_{\tau}^{\mathsf{in}}(\mathrm{SQN}_{\mathrm{U}}) \rangle \}_{\mathsf{pk}_{\mathrm{N}}}^{\mathsf{ne}}$

$$\sigma_{\tau}^{\mathsf{up}} \equiv \begin{cases} \\ \mathsf{b-auth}_{\mathsf{u}} \mapsto \mathbf{g}(\phi_{\tau}^{\mathsf{in}}) \end{cases} \end{cases}$$

$$\begin{split} t_{\tau}^{\mathsf{enc}} &\equiv \{ \langle \mathrm{ID} \,, \, \sigma_{\tau}^{\mathsf{in}}(\mathrm{SQN}_{\mathrm{U}}) \rangle \}_{\mathsf{pk}_{\mathrm{N}}}^{\mathsf{ne}} \\ \phi_{\tau} &\equiv \phi_{\tau}^{\mathsf{in}}, \langle t_{\tau}^{\mathsf{enc}} \,, \, \mathsf{Mac}_{\mathsf{k}_{\mathrm{m}}^{\mathrm{in}}}^{1}(\langle t_{\tau}^{\mathsf{enc}} \,, \, \boldsymbol{g}(\phi_{\tau}^{\mathsf{in}}) \rangle) \rangle \\ \sigma_{\tau}^{\mathsf{up}} &\equiv \begin{cases} \\ \\ \mathsf{b}\text{-auth}_{\mathrm{U}} \mapsto \boldsymbol{g}(\phi_{\tau}^{\mathsf{in}}) \end{cases} \end{cases} \end{split}$$

$$\begin{split} t_{\tau}^{\mathsf{enc}} &\equiv \{ \langle \mathrm{ID}, \, \sigma_{\tau}^{\mathsf{in}}(\mathrm{SQN}_{\mathrm{U}}) \rangle \}_{\mathsf{pk}_{\mathrm{N}}}^{\mathsf{ne}} \\ \phi_{\tau} &\equiv \phi_{\tau}^{\mathsf{in}}, \langle t_{\tau}^{\mathsf{enc}}, \, \mathsf{Mac}_{\mathsf{k}_{\mathrm{m}}^{\mathrm{ID}}}^{1}(\langle t_{\tau}^{\mathsf{enc}}, \, g(\phi_{\tau}^{\mathsf{in}}) \rangle) \rangle \\ \sigma_{\tau}^{\mathsf{up}} &\equiv \begin{cases} \mathrm{SQN}_{\mathrm{U}} \mapsto \mathsf{suc}(\sigma_{\tau}^{\mathsf{in}}(\mathrm{SQN}_{\mathrm{U}}^{\mathrm{ID}})) \\ \mathsf{b-auth}_{\mathrm{U}} \mapsto g(\phi_{\tau}^{\mathsf{in}}) \end{cases} \\ \sigma_{\tau} &\equiv \sigma_{\tau}^{\mathsf{in}} \cdot \sigma_{\tau}^{\mathsf{up}} \end{split}$$

Proposition: Mac Unforgeability

If Mac is an $\operatorname{EUF-MAC}$ function, then the following axiom is valid:

$$\overline{\operatorname{verify}_{k_m}(s,m)} \to \bigvee_{u \in S} s = \operatorname{Mac}_{k_m}(u) \tag{EUF-MAC}$$

Proposition: Mac Unforgeability

If Mac is an $\operatorname{EUF-MAC}$ function, then the following axiom is valid:

$$\operatorname{verify}_{\mathsf{k}_{\mathsf{m}}}(s,m) \to \bigvee_{u \in \mathcal{S}} s = \operatorname{Mac}_{\mathsf{k}_{\mathsf{m}}}(u) \tag{EUF-MAC}$$

Where:

- S is the set of subterms of s, m of the form $Mac_{k_m}(_)$.
- k_m appears only in Mac key position in s, m.

Proposition: Mac Unforgeability

If Mac is an ${\ensuremath{{\rm EUF-MAC}}}$ function, then the following axiom is valid:

$$\mathsf{verify}_{\mathsf{k}_{\mathsf{m}}}(s,m) \to \bigvee_{u \in \mathcal{S}} s = \mathsf{Mac}_{\mathsf{k}_{\mathsf{m}}}(u) \tag{EUF-MAC}$$

Where:

• S is the set of subterms of s, m of the form $Mac_{k_m}(_)$.

• k_m appears only in Mac key position in s, m.

Example

$$\phi \equiv \mathsf{Mac}_{\mathsf{k_m}}(\mathbf{t_1}), \mathsf{Mac}_{\mathsf{k_m}}(\mathbf{t_2}), \mathsf{Mac}_{\mathsf{k'_m}}(\mathbf{t_3})$$

$$\mathsf{verify}_{\mathsf{k_m}}(g(\phi),\mathsf{n}) \rightarrow$$

Proposition: Mac Unforgeability

If Mac is an ${\ensuremath{{\rm EUF-MAC}}}$ function, then the following axiom is valid:

$$\overline{\operatorname{verify}_{k_m}(s,m)} \to \bigvee_{u \in \mathcal{S}} s = \operatorname{Mac}_{k_m}(u) \tag{EUF-MAC}$$

Where:

• S is the set of subterms of s, m of the form $Mac_{k_m}(_)$.

• k_m appears only in Mac key position in s, m.

Example

$$\phi \equiv \mathsf{Mac}_{\mathsf{k_m}}(\mathbf{t_1}), \mathsf{Mac}_{\mathsf{k_m}}(\mathbf{t_2}), \mathsf{Mac}_{\mathsf{k'_m}}(\mathbf{t_3})$$

$$\mathsf{verify}_{\mathsf{k_m}}(g(\phi),\mathsf{n}) \ \rightarrow \ \left(g(\phi) = \mathsf{Mac}_{\mathsf{k_m}}(\underline{t_1}) \lor g(\phi) = \mathsf{Mac}_{\mathsf{k_m}}(\underline{t_2})\right)$$

Inference Rules

Function Application

If you cannot distinguish the arguments, you cannot distinguish the images.

$$\frac{x_1,\ldots,x_n\sim y_1,\ldots,y_n}{f(x_1,\ldots,x_n)\sim f(y_1,\ldots,y_n)} FA$$
Theorem

Definition

For every τ , we let $\underline{\tau}$ be τ where we use a fresh identity each time we run the ID sub-protocol.

Theorem

Definition

For every τ , we let $\underline{\tau}$ be τ where we use a fresh identity each time we run the ID sub-protocol.

Lemma

For every τ , there is a derivation using Ax of the formula $\phi_{\tau} \sim \phi_{\tau}$.

Theorem

Definition

For every τ , we let $\underline{\tau}$ be τ where we use a fresh identity each time we run the ID sub-protocol.

Lemma

For every τ , there is a derivation using Ax of the formula $\phi_{\tau} \sim \phi_{\underline{\tau}}$.

Theorem

The AKA⁺ protocol is σ -unlinkable for an arbitrary number of agents and sessions when:

- The asymmetric encryption {_}- is IND-CCA1.
- H and H^r (resp. $Mac^{1}-Mac^{5}$) satisfy jointly the PRF assumption.

Remarks and Proof

Remarks

- This is against an **active attacker**.
- We show this for an arbitrary number of agents and sessions.

Remarks and Proof

Remarks

- This is against an **active attacker**.
- We show this for an arbitrary number of agents and sessions.

Proof

The proof is by induction over the symbolic trace τ . Finding the invariant requires some work, as it needs to:

- anticipate what will be needed latter (e.g. encryptions).
- match the left and right views of the adversary on the state.

Remarks and Proof

Remarks

- This is against an **active attacker**.
- We show this for an arbitrary number of agents and sessions.

Proof

The proof is by induction over the symbolic trace τ . Finding the invariant requires some work, as it needs to:

- anticipate what will be needed latter (e.g. encryptions).
- match the left and right views of the adversary on the state. E.g.:

$$\begin{array}{ll} \text{if } \sigma_{\tau}(\text{sync}_{U}^{\text{ID}}) & \text{if } \sigma_{\underline{\tau}}(\text{sync}_{U}^{\text{ID}\underline{\tau}}) \\ \text{then } \sigma_{\tau}(\text{SQN}_{U}^{\text{ID}}) - \sigma_{\tau}(\text{SQN}_{N}^{\text{ID}}) & \sim & \text{then } \sigma_{\underline{\tau}}(\text{sQN}_{U}^{\text{ID}\underline{\tau}}) - \sigma_{\underline{\tau}}(\text{sQN}_{N}^{\text{ID}\underline{\tau}}) \\ \text{else } \bot & \text{else } \bot \end{array}$$

■ While 5G-AKA prevents the IMSI-catcher attack, all others known unlinkability attacks still applies.

- While 5G-AKA prevents the IMSI-catcher attack, all others known unlinkability attacks still applies.
- We gave a new unlinkability attack against PRIV-AKA.

- While 5G-AKA prevents the IMSI-catcher attack, all others known unlinkability attacks still applies.
- We gave a new unlinkability attack against PRIV-AKA.
- We proposed the AKA⁺ protocol, which satisfies the design constraints of 5G-AKA.

- While 5G-AKA prevents the IMSI-catcher attack, all others known unlinkability attacks still applies.
- We gave a new unlinkability attack against PRIV-AKA.
- We proposed the AKA⁺ protocol, which satisfies the design constraints of 5G-AKA.
- We defined the notion of σ -unlinkability.

- While 5G-AKA prevents the IMSI-catcher attack, all others known unlinkability attacks still applies.
- We gave a new unlinkability attack against PRIV-AKA.
- We proposed the AKA⁺ protocol, which satisfies the design constraints of 5G-AKA.
- We defined the notion of σ -unlinkability.
- We proved in the BC logic that AKA^+ is σ -unlinkability.
- We also proved that AKA⁺ provides mutual authentication.

Thanks for your attention

References I

[3GPP, 2018] 3GPP (2018).

Ts 33.501: Security architecture and procedures for 5g system.

[Arapinis et al., 2012] Arapinis, M., Mancini, L. I., Ritter, E., Ryan, M., Golde, N., Redon, K., and Borgaonkar, R. (2012).
New privacy issues in mobile telephony: fix and verification.
In the ACM Conference on Computer and Communications Security, CCS'12, pages 205–216. ACM.

[Bana and Comon-Lundh, 2014] Bana, G. and Comon-Lundh, H. (2014). A computationally complete symbolic attacker for equivalence properties.

In 2014 ACM Conference on Computer and Communications Security, CCS '14, pages 609–620. ACM.

[Fouque et al., 2016] Fouque, P., Onete, C., and Richard, B. (2016). Achieving better privacy for the 3gpp AKA protocol. *PoPETs*, 2016(4):255–275.

[Strobel, 2007] Strobel, D. (2007). Imsi catcher. Ruhr-Universität Bochum. Seminar Work.

No Pre-Fetching of Authentication Vectors

From the 3GPP specification for 5G-AKA ([3GPP, 2018], p. 37)

5G AKA does not support requesting multiple 5G AVs, neither the SEAF pre-fetching 5G AVs from the home network for future use.

The ASSIGN-TMP-ID Sub-Protocol

PRIV-AKA [Fouque et al., 2016]

PRIV-AKA [Fouque et al., 2016]

Client	Server	Operator
	 (2): Process the identifier ID: If the identifier is a TMSI then Val = IMSI. Otherwise, Val = (ID, R_{id}). (4): Store {AV⁽¹⁾}ⁿ_{i=1}. (5): Store {AV⁽¹⁾}ⁿ one by one in order. Then, it sends the authentication challenge and the new couple (TMSI_n, ids⁽¹⁾) encrypted and authenticated by the session keys. (6): If the authentication of the client is verified (Res ²/₂ Macc), then they ask to the server the update of its sequence number. Otherwise, the protocol is aborted. 	$ \label{eq:second} \begin{split} & \textcircled{3}: \mbox{Verify the identity of the client with Val.} \\ & \mbox{If this holds, retrieve dxc, set idx_{0p,C} := idx_C} \\ & \mbox{Generate} \left(R^{(1)}, \dots, R^{(1n)} \right) \mbox{Denote: keys} := (sk_C, sk_{0p}). \\ & \mbox{For each } i = 1, \dots, n, compute: \\ & \mbox{Mac} \leftarrow \mathcal{F}_1(keys, R^{(1)}, Sqn^{(1)}, Ress, AMF), \\ & \mbox{Mac} \leftarrow \mathcal{F}_1(keys, R^{(1)}, Sqn^{(1)}, Ress, AMF), \\ & \mbox{Keys}, R^{(1)}, Sqn^{(1)}, Ress, AMF), \\ & \mbox{Keys}, R^{(1)}, Sqn^{(1)}, Ress, AMF), \\ & \mbox{Keys}, R^{(1)}, Ress, AMF), \\ & \mbox{Att} n^{(1)} \leftarrow (Sqn^{(1)} \oplus AK) \ AMF \ Macs, \\ & \mbox{Sqn}^{(1)} \coloneqq (R^{(1)}, CK, IK, Autn^{(1)}, Mac_C, idx^{(1)}), with \\ & \mbox{Sqn}^{(1)} \coloneqq (Idx_{0p,C}, V \neq 1, idx^{(1)} = 0. \\ & \mbox{End to:} \\ \hline & \mbox{O} : Update the sequence number: \\ & \mbox{Sqn}_{0p,C} \leftarrow inc(Sqn_{0p,C}). \\ & \mbox{Rest the index idx}_{0p,C}. \\ \hline \end{cases}$

- Smart-phone icon: Gregor Hagedorn, CC-BY-SA-3.0
- Database icon: Font Awesome, CC-BY-4.0