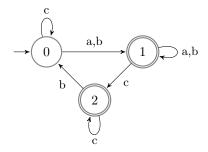


LANGAGES ET AUTOMATES (LA3)

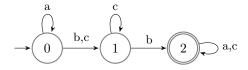
Contrôle Continue [1 heure]

(Aucun document autorisé)

1 Considérez l'automate suivant :



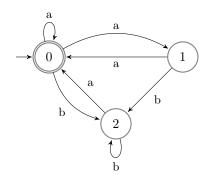
- 1. Est-ce que cet automate accepte le mot ccabab? Et le mot acbccccc?
- 2. Quel est l'ensemble des états finaux de cet automate?
- 3. Cet automate est-il complet? Est-il déterministe?
- 2 Compléter l'automate suivant :



- 3 Soient \mathcal{L} , \mathcal{M} et \mathcal{N} des langages. Les égalités de langages suivantes sont-elles vraies? Si non, donnez un contre-exemple. Si oui, justifiez en quelques lignes (il n'est pas demandé de preuve formelle).
 - 1. $\mathcal{M} \cdot (\mathcal{M} \cup \mathcal{N})^* = \mathcal{M} \cdot (\mathcal{N} \cup \mathcal{M})^*$.
 - 2. $\mathcal{M} \cdot (\mathcal{N} \cap \mathcal{L}) = (\mathcal{M} \cdot \mathcal{N}) \cap (\mathcal{M} \cdot \mathcal{L}).$
 - $3. (\mathcal{M}^*)^* = \mathcal{M}^*$
- 4 Donner des expressions rationnelles pour les langages suivants :
 - 1. Sur l'alphabet $\{a,b\}$, l'ensemble \mathcal{L} des mots avec un nombre impaire de b.
 - 2. Sur l'alphabet $\{a,b\}$, l'ensemble $\mathcal M$ des mots contenant un b après un a.
 - 3. Sur l'alphabet $\{a,b,c\}$, l'ensemble \mathcal{N} des mots contenant contenant un nombre pair de a et ou chaque c est suivi immédiatement par deux b.

Décrire en français le langage reconnu par l'expression rationnelle suivante :

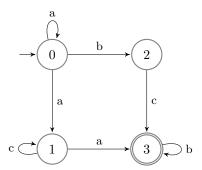
- 3. $a^* \cdot (ba^+bba^+)^* \cdot (b+\epsilon) \cdot a^+$
- 5 Déterminiser l'automate suivant :



6 On travail sur l'alphabet $\Sigma = \{a, b\}$. Soit $\mathcal{L} = \{uvw \mid u, w \in \Sigma^* \text{ et } v \in \{aaa, bbb\}\}$.

- 1. Donnez un expression régulière pour \mathcal{L} .
- 2. Donnez un automate déterministe qui reconnaît \mathcal{L} .
- 3. Soit $\mathcal{M} = \{(aab)^n (abb)^m \mid n, m \in \mathbb{N}\}$, montrez que $\mathcal{L} \cap \mathcal{M} = \emptyset$.

7 Soit \mathcal{A} l'automate suivant :



1. Donnez une expression rationnelle pour le langage $\mathcal{L}(\mathcal{A})$.

Le langage miroir d'un langage \mathcal{L} est le langage $\widetilde{\mathcal{L}} = \{\widetilde{u} \mid u \in \mathcal{L}\}$, où $\widetilde{u} = x_n \dots x_1$ si $u = x_1 \dots x_n$.

- 2. Donner une expression rationnelle pour le langage miroir de $\mathcal{L}(\mathcal{A})$.
- 3. Donner un automate reconnaissant le langage miroir de $\mathcal{L}(A)$.
- 4. Plus généralement, montrer que si \mathcal{L} est un langage reconnaissable, alors son langage miroir $\widetilde{\mathcal{L}}$ est reconnaissable.