Probabilistic Aspects of Computer Science: TD Bonus Average Reward for Unichains

Chargé de TD: Adrien Koutsos

October 25, 2017

A Markov Decision Process \mathcal{M} is said to be a *unichain* if the finite-state Markov chain \mathcal{M}^{π} , induced by any deterministic stationary policy $\pi = d^{\infty}$, has exactly one recurrent strongly connected component plus a possibly empty set of transient states (it is often said to be *recurrent* in case this set of transient states is empty). Otherwise, the MDP is said to be *multichain*. We are interested in the following in studying the limsup and liminf average optimal rewards

$$\mathbf{g}_{+}^{*}[s] = \sup_{\pi \in \Pi^{MR}} (\mathbf{g}_{+}^{\pi}[s]) \qquad \text{where} \qquad \mathbf{g}_{+}^{\pi} = \limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbf{E}^{\pi}(r(X_{i}, Y_{i}))$$
$$\mathbf{g}_{-}^{*}[s] = \sup_{\pi \in \Pi^{MR}} (\mathbf{g}_{-}^{\pi}[s]) \qquad \text{where} \qquad \mathbf{g}_{-}^{\pi} = \liminf_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbf{E}^{\pi}(r(X_{i}, Y_{i}))$$

and the average optimal reward in case $\mathbf{g}_{+}^{*} = \mathbf{g}_{-}^{*}$ (we denote it \mathbf{g}^{*} in that case).

Exercise 1 (Average rewards in unichains). We consider in this exercise a unichain \mathcal{M} .

- 1. We start by studying a particular deterministic stationary policy d^{∞} . Let \mathbf{P}_d be the matrix of the finite-state Markov chain $\mathcal{M}^{d^{\infty}}$. Describe precisely the matrix \mathbf{P}_d^* defined as the Cesaro-limit of the sequence $\{\mathbf{P}_d^n\}_{n\in\mathbb{N}}$. Show that $\mathbf{g}^{d^{\infty}}$ exists and is a constant vector.
- 2. We consider the system of equations (E), with variables $g \in \mathbb{R}$ and $\mathbf{h} \in \mathbb{R}^S$:

$$\forall s \in S \qquad g + \mathbf{h}[s] = \max\{r(s, a) + \sum_{s' \in S} p(s' \mid s, a) \mathbf{h}[s'] \mid a \in A_s\}$$

Using Theorem 3.38, show that

- let d^{∞} be a Blackwell optimal policy. Then $((\mathbf{P}_d^*\mathbf{r}_d)[s_0], \mathbf{D}_d\mathbf{r}_d)$ is a solution of (E), for every state s_0 ;¹
- if (g, \mathbf{h}) is a solution of (E), then $g = \mathbf{g}^*[s]$ for every state $s \in S$, and there exists $c \in \mathbb{R}$ such that $\mathbf{h}[s] = (\mathbf{D}_d \mathbf{r}_d)[s] + c$ for every state s, with d^{∞} a Blackwell optimal policy.
- 3. Consider the MDP schematized below:

$$a, 1/2, 5$$
 $a, 1, -1$
 $a, 1/2, 5$
 1
 $b, 1, 10$

Show that it is a unichain, and write the system of equations (E). Solve it. Among all the deterministic stationary policies of this MDP, which one(s) is/are optimal? a Blackwell optimal policy?

¹We denote by \mathbf{D}_d the deviation matrix defined by $(\mathbf{Id} - \mathbf{P}_d + \mathbf{P}_d^*)^{-1} - \mathbf{P}_d^*$.

- 4. For $\mathbf{h} \in \mathbb{R}^{S}$, a decision rule d is \mathbf{h} -improving if $\mathbf{r}_{d} + \mathbf{P}_{d}\mathbf{h} = \max_{d'}(\mathbf{r}_{d'} + \mathbf{P}_{d'}\mathbf{h})$. Let (g, \mathbf{h}) be a solution of (E), and let d be an \mathbf{h} -improving decision rule. Show that d^{∞} is an optimal policy, i.e., $\mathbf{g}^{d^{\infty}} = \mathbf{g}^{*}$.
- 5. What becomes of the policy iteration presented in the course in this special case?

Exercise 2 (coNP-completeness of deciding if an MDP is a unichain). Show that the problem of deciding whether a given MDP is a unichain is in coNP (equivalently that deciding if it is a multichain is in NP. By reduction of 3-SAT, show that it is indeed a coNP-complete problem. (*Hint: starting from an instance* φ of 3-SAT, construct an MDP \mathcal{M}_{φ} such that φ is satisfiable if, and only if, \mathcal{M}_{φ} is a multichain. You may think of using as states of the MDP: one state c_j per clause $(j \in \{1, \ldots, m\})$, 4 states s_i, s_i^*, t_i, f_i per litteral $(i \in \{1, \ldots, n\})$, and two special states a and b, one encoding a truth assignment, and the other encoding its converse.)