
Probabilistic Aspects of Computer Science: TD4

Reachability Objectives in MDP

Adrien Koutsos

October 4, 2017

We are interested here in computing the minimum and maximum probabilities to reach a subset of
states of a given MDP, and in describing policies achieving these optima.

In the following, we consider an MDPM = (S, {As}s∈S , p) with no reward functions. We recall that
a history σ in M is an infinite sequence (s0, a0, s1, a1, s2, . . .), such that for all i ≥ 0, si ∈ S, ai ∈ Asi
and p(si+1 | si, ai) > 0. Given an initial state s ∈ S, we denote Hist(s) the set of histories starting in
s. Then a policy π ∈ ΠHR (history-dependent and randomized) permits to define discrete-time Markov
chain Mπ with set of states being the finite prefixes of histories in Hist(s).

Given a target subset T of S, we denote as Hist(s, T ) the set of histories, starting from state s, and
reaching at some moment a state of T , i.e., such that there exists n with sn ∈ T . As the reachability
property only depends on a finite prefix of the history, Hist(s, T ) is a measurable subset of Hist(s), hence,
the DTMCMπ defines its probability, denoted Prπ(s, T ). In the following, we study the two quantities

pmin(s, T ) = inf
π∈ΠHR

Prπ(s, T ) and pmax(s, T ) = sup
π∈ΠHR

Prπ(s, T ) .

We will suppose in the following that states of T are absorbing, i.e., for all t ∈ T , At = {αt} with
p(t | t, αt) = 1.

You are invited to use the example depicted below throughout the rest, with s = s0 and T = {s2}.

s0

s1 s2

s3a, 0.25

a, 0.5 a, 1

b, 1

b, 1

a, 0.5

a, 0.25

a, 0.4

a, 0.1 a, 1

Exercise 1 (Qualitative analysis). We start by considering the problem of determining states s for which
pmin(s, T ) or pmax(s, T ) is zero or one: we denote these four possible sets of states as Smin=0

T , Smin=1
T ,

Smax=0
T and Smax=1

T .

1. Find an iterative algorithm to compute the four sets.

2. What is the complexity of your algorithms?

Exercise 2 (Stationary deterministic policies are enough). We consider known, thanks to the previous
exercise, the sets Smin=0

T and Smin=1
T , and denote as S? the set S \ (Smin=0

T ∪ Smin=1
T ). We define (E) as
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the equation of the variable x ∈ RS :

xs =


1 if s ∈ Smin=1

T

0 if s ∈ Smin=0
T

min
a∈As

∑
s′∈S

p(s′ | s, a)xs′ if s ∈ S? .

1. Show that the vector (pmin(s, T ))s∈S is a solution of (E).

2. Consider a stationary deterministic policy d∞. Find a simple equation (E′
d) having as unique solu-

tion the vector (Prd
∞

(s, T ))s∈S? . (Hint: to prove uniqueness, you may search for the classification
of the states of the underlying DTMC with set of states S.)

3. Prove that (E) has then a unique solution and that pmin(s, T ) is indeed a minimum computable by
minπ∈ΠSD Prπ(s, T ) (since ΠSD is a finite set). This shows the existence of an optimal strategy.

Exercise 3 (Computing pmin(s, T ) and an optimal policy). We will study the three principal methods
enabling the computation of pmin(s, T ) and an optimal policy: value iteration, linear programming and
policy iteration.

1. Write a value iteration algorithm to estimate the probability pmin(s, T ) and an associated almost
optimal policy. (Recall: value iteration is based on the iteration of the operator F suggested in
equation (E) of the previous exercise, such that pmin(s, T ) is its unique fixed point.)

2. Show that the vector (pmin(s, T ))s∈S is the unique solution of the following linear programming:

Maximize
∑
s∈S

xs subject to


∀s ∈ Smin=1

T xs = 1

∀s ∈ Smin=0
T xs = 0

∀s ∈ S? ∀a ∈ As xs ≤
∑
s′∈S p(s

′ | s, a)xs′

3. Write a policy iteration algorithm to find the exact value of pmin(s, T ) and an associated optimal
policy.

Exercise 4 (When stationary deterministic policies are not enough...). Find objectives which are more
complex than reachability such that the maximal probability for this objective is not anymore obtainable
with a stationary deterministic policy. In particular, find an example where histories are necessary, and
another where randomization is necessary.
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