
Probabilistic Aspects of Computer Science: TD3

Random walks and applications

Adrien Koutsos

September 27, 2016

Exercise 1 (Cover time). Let G = (V,E) be a finite, undirected, and connected graph. A random walk
on G is a Markov chain defined by the sequence of moves of a particle between vertices of G. In this
process, the place of the particle at a given time step is the state of the system. If the particle is at
vertex i and if i has d(i) outgoing edges, then the probability that the particle follows the edge {i, j}
and moves to a neighbor j is 1/d(i).

1. Show that a random walk on an undirected graph G is aperiodic if and only if G is not bipartite.

2. In the rest of the exercise, we assume that G is not bipartite. Show that a random walk on G

converges to a steady-state distribution π, where πv = d(v)
2|E| .

3. We consider a new Markov chain defined on the edges of G. The current state is defined to be the
pair composed of the edge most recently traversed in the random walk, together with the direction
of this traversal: the state space is hence the set of directed edges. There are 2|E| states in this
new Markov chain, and its transition matrix Q is given by:

Q(u,v),(v,w) =

{
1

d(v) if {u, v} ∈ E
0 otherwise

Compute its steady-state distribution.

4. We denote µv,u the expected number of steps to reach u from v. Show that if {u, v} ∈ E, then
µu,v + µv,u ≤ 2|E| (Hint: use the result of the previous question).

5. The cover time of G is defined as the maximum over all vertices v ∈ V of the expected time to
visit all of the nodes in the graph by a random walk starting from v. Show that the cover time of
G is bounded above by 2|E|(|V | − 1).

6. As an application, suppose we are given an undirected graph G = (V,E) and two vertices s and t in
G, and we want to determine whether there is a path connecting s and t. For simplicity, assume that
the graph G has no bipartite connected components. By standard deterministic search algorithms,
we can easily solve the problem in linear time, using Ω(n) space. Show that the following algorithm
returns the correct answer with probability 1/2, and it only errs by returning that there is no path
from s to t when there is such a path. What is the time and space complexities of this algorithm?
(Hint: you may use the Markov’s inequality, which says for a random variable X and a > 0 that

Pr(|X| ≥ a) ≤ E(|X|)
a .)

s-t Connectivity algorithm
1. Start a random walk from s.
2. If the walk reached t within 2|V |3 steps, return that there is a path. Other-
wise, return that there is no path.

Exercise 2 (Lumpability and Couplings). The goal of this exercice is to introduce the notions of lumpa-
bility of a Markov Chain, and of probabilistic couplings.
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1. Lumpability: consider a Markov Chain (Xn)n∈N with states S and transition probabilities given
by P . Assume that we have a decomposition of S into (non-empty disjunct sets) S1, . . . ,Sl such
that the following property (called the strong lumpability property) holds:

∀i, j, ∀s, s′ ∈ Si, Pr(Xn+1 ∈ Sj | Xn = s) = Pr(Xn+1 ∈ Sj | Xn = s′)

Let Cag be the Markov Chain with states {S1, . . . ,Sl} whose initial distribution and transition
propabilities are:

∀i, π(0)
ag [i] =

∑
s∈Si

π(0)[s]

P ag[i][j] =
∑
s′∈Sj

P [s][s′] (for some s ∈ Si)

Show that for all n, π
(n)
ag [i] =

∑
s∈Si π

(n)[s].

2. Couplings: consider two Markov Chain Ml,Mr with the same set of states S and transition
probabilities given by Pl and Pr. Let R be a relation on S × S, and suppose that {x | ∃y, (x, y) ∈
R} = S and {y | ∃x, (x, y) ∈ R} = S. A R-coupling ofM is a Markov ChainMc with state space
R and transition probabilities Pc such that:

• Left Marginal: For all (s0, s
′
0) ∈ R, s1 ∈ S we have:∑

{s′1|(s1,s′1)∈R}

Pc[(s0, s
′
0)][(s1, s

′
1)] = Pl[s0][s1]

• Right Marginal: For all (s0, s
′
0) ∈ R, s′1 ∈ S we have:∑

{s1|(s1,s′1)∈R}

Pc[(s0, s
′
0)][(s1, s

′
1)] = Pr[s′0][s′1]

Show the following properties of couplings:

(a) Show that if (Xn, Yn)n∈N is a stochastic process followingMc, then the left projection (Xn)n∈N
(resp. right projection (Yn)n∈N) is a Markov Chain with state space S and transition proba-
bilities Pl (resp. Pr).

(b) Show that any Markov Chain admits a (trivial) coupling.

3. Reachability Couplings: We focus on reachability coupling: let T ⊆ S be an absorbing subset
in Ml and Mr (i.e. ∀s ∈ T , s′ ∈ S, Pl[s][s

′] > 0 ⇒ s′ ∈ T and Pr[s][s′] > 0 ⇒ s′ ∈ T ). A
R-coupling is a reachability coupling for T if R is of the form:

R = {(s, s′) ∈ S2 | s = s′ ∨ s ∈ T }

(a) Show that in that case we have that for all n:

Pr(Xn 6∈ T ) ≤ Pr(Yn 6∈ T )

(b) Let T reach
l (resp. T reach

r ) be the time taken to reach T in Ml (resp. Mr). Deduce from the
previous question the following relation on the expected time to reach T in the left and right
Markov Chains:

E(T reach
l ) ≤ E(T reach

r )

4. Application to a coloring problem: A coloring of a graph is an assignment of a color to each
of its vertices. A graph is k-colorable if there is a coloring of the graph with k colors such that no
two adjacent vertices have the same color. An almost 2-coloring of a graph G is a coloring of G
with two colors such that no triangle is monochromatic. Let G be a 3-colorable graph.
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(a) Show that there exists a coloring of the graph with two colors such that no triangle is
monochromatic.

(b) Consider the following algorithm looking for an almost 2-coloring of the vertices of G. The al-
gorithm begins with an arbitrary coloring c of G with 2 colors. While there are any monochro-
matic triangles in G, the algorithm chooses deterministically one such triangle and changes
the color of a randomly chosen vertex of that triangle. Our goal is to derive an upper bound on
the expected number of such recoloring steps before the algorithm finds an almost 2-coloring
of G.

Let C be any 3-coloring of the graph (for example with colors red, blue and green). Suppose
that we use colors blue and green in our colorings with two colors. Let T be the set of almost
2-coloring of G and A be the set of coloring (using only green and blue) of G that are not
almost 2-coloring. For all coloring c ∈ A, we let mono(c) be a monochromatic triangle in G
with coloring c. Describe the algorithm as a Markov Chain Ml with state space S = A ∪ T
(we will use P to denote its transition matrix). Since the algorithm terminates when it reaches
a coloring c ∈ T , we will choose that ∀c ∈ T , P [c][c] = 1 (therefore T is absorbing).

(c) Let k(c) be the number of vertices which have the same colors in C and the coloring c. We let
kmin = minc∈A(k(c)) and kmax = maxc∈A(k(c)). Moreover for all k ∈ {kmin, . . . , kmax}, we
let Ak = {c ∈ A | k(c) = k}. Show that for all n:

∀c ∈ Ak, P [c][Ak] = Prl(Xn+1 ∈ Ak | Xn = c) ∈ {0; 1/3} (kmin ≤ k ≤ kmax)

∀c ∈ Ak, P [c][Ak+1] = Prl(Xn+1 ∈ Ak+1 | Xn = c) ∈ {0; 1/3} (kmin ≤ k < kmax)

∀c ∈ Ak, P [c][Ak−1] = Prl(Xn+1 ∈ Ak−1 | Xn = c) ∈ {0; 1/3} (kmin < k ≤ kmax)

Moreover show that:

P [c][T ] +
∑

l∈{k−1,k,k+1}

P [c][Al] = 1 (c ∈ Ak and kmin < k < kmax)

P [c][T ] +
∑

l∈{kmin,kmin+1}

P [c][Al] = 1 (c ∈ Akmin)

P [c][T ] +
∑

l∈{kmax−1,kmax}

P [c][Al] = 1 (c ∈ Akmax)

Deduce that:

∀c ∈ Akmax ,Prl(Xn+1 ∈ T | Xn = c) ≥ 1/3

∀c ∈ Akmin ,Prl(Xn+1 ∈ T | Xn = c) ≥ 1/3

(d) Assume that for all k ∈ {kmin, . . . , kmax}, there exists an element ak ∈ Ak (we could easily
remove this assumption by adding “dummy” elements). Construct a Markov ChainMr with
the same set of states S but transition matrix P ′ such that all the transitions have probability
1/3, i.e. for all n:

∀c ∈ Ak,Prr(Xn+1 ∈ Ak | Xn = c) = 1/3 (kmin ≤ k ≤ kmax)

∀c ∈ Ak,Prr(Xn+1 ∈ Ak+1 | Xn = c) = 1/3 (kmin ≤ k < kmax)

∀c ∈ Ak,Prr(Xn+1 ∈ Ak−1 | Xn = c) = 1/3 (kmin < k ≤ kmax)

And:

∀c ∈ Akmax ,Prr(Xn+1 ∈ T | Xn = c) = 1/3

∀c ∈ Akmin ,Prr(Xn+1 ∈ T | Xn = c) = 1/3

And show that there exists a reachability coupling between Ml and Mr with target set T .

Hint: Follow the behavior of Ml as long as it stays in A, but change the behavior (by using
the elements {ak | kmin ≤ k ≤ kmax}) if the left chain goes “too early” in T .
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(e) Show that the Markov Chain Mr satisfies the strong lumpability property for the decompo-
sition {Ak | kmin ≤ j ≤ kmax} ∪ {T }, and show that the resulting lumped chain Mlump

r is of
the form:

Akmin . . . Ak . . . Akmax

T

1/3 1/3 1/3 1/3

1/3 1/3

1/3 1/3 1/3

1

(f) Deduce that the expected time Treach
r to reach T inMr is upper bounded by O(n2) (where n

is the number of vertices of G).

Hint: use the upper bound on the cover time of a random walk in a graph shown in Exercice 1.

Deduce from this an upper bound on the expected time Treach
l to reach T in Ml, using the

result on reachability couplings shown before.

Exercise 3 (Cat and mouse). A cat and a mouse each independently take a random walk on a connected,
undirected, non-bipartite graph G, with n vertices and m edges. They start at the same time on different
nodes, and each makes one transition at each time step. The cat eats the mouse if they are ever at the
same node at some time step. Show an upper bound of O((nm)2) on the expected time before the cat
eats the mouse. What is a good strategy for the cat to eat quickly the mouse?

Exercise 4 (Computation of cover times).

1. What is the cover time of a line when we start on an end node of the line?

2. What is the cover time of a complete graph?

The lollipop graph on n vertices is a clique on n/2 vertices connected with a line on n/2 vertices as
shown below:

Kn/2

u v

line on n/2 vertices

The node u is a part of both the clique and the line. Let v denote the other end of the line.

3. Show that the cover time of a random walk starting at v is Θ(n2).

4. Show that the cover time of a random walk starting at u is Θ(n3).

Exercise 5. For the following random walks, give the classification of the states (transient, null recurrent,
or positive recurrent) and tell whether they admit a steady-state distribution.

1. the random walk over Z?
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2. the random walk on the 2-dimensional integer lattice, where each point has four neighbors (up,
down, left, and right)?

3. the random walk on the 3-dimensional integer lattice?
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