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Exercise 1. We study again the same exercise than last week, but with simpler tools.

1. Let Xn be the number of heads obtained after n independent tosses of a (possibly unfair) coin.
Show that, for any k ≥ 2,

lim
n→∞

Pr(Xn is divisible by k) =
1

k

2. Solve the problem when Xn represents the sum of n independent rolls of a dice.

Exercise 2. Exhibit a Markov chain which has null recurrent states (different from the one studied in
course).

Exercise 3. Show that if a Markov chain has two steady-state distributions, then it has an infinite
number of steady-state distributions.

Exercise 4 (Move-to-front heuristic). Suppose that we are given n ≥ 2 records R1, R2, . . . , Rn. The
records are kept in some order. The cost of accessing the jth record in the order is j. Thus, if we had
four records ordered as R2, R4, R3, R1, then the cost of accessing R4 would be 2 and the cost of accessing
R1 would be 4.

Suppose further that, at each step, record Rj is accessed with probability pj , with each step being
independent of other steps.

1. If we knew the values of the pj in advance, what is the best choice to order the records?

We suppose now that we do not know the pj in advance and we use a move-to-front heuristic: at
each step, put the record that was accessed at the front of the list. We assume that moving the record
can be done with no cost and that all other records remain in the same order. For example, if the order
was R2, R4, R3, R1 before R3 was accessed, then the order at the next step would be R3, R2, R4, R1.

3. Describe this problem with a Markov chain whose set of states is the set of permutation over n
elements, and show that it admits a steady-state distribution.

4. We define

ϕn(x1, . . . , xn) =

n∏
i=1

xi∑n
j=i xj

Show that for all πσ = ϕn(pσ(1), . . . , pσ(n)) is the steady-state distribution of this chain.

5. Let Xk be the cost for accessing the kth requested record, Vk,i be the event that the k-th query
refers to record Ri. Using the law of total expectation we get that:

E(Xk) =

n∑
i=1

E(Xk | Vk,i)Pr(Vk,i)

(a) Let V ′k,i the event that the kth query refers to Ri and some query previous to the kth also
referred to Ri. Show that:

lim
k→+∞

E(Xk | Vk,i) = lim
k→+∞

E(Xk | V ′k,i)
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(b) Let Mk,i be the number of queries between the k-th query and the last time record Ri was
queried. Using that, give an expression, without probabilities, of E(Xk | V ′k,i).

(c) Conclude by showing that:

lim
k→∞

E(Xk) =
1

2
+

∑
i,j

pipj
pi + pj

.

Exercise 5 (Cover time). Let G = (V,E) be a finite, undirected, and connected graph. A random walk
on G is a Markov chain defined by the sequence of moves of a particle between vertices of G. In this
process, the place of the particle at a given time step is the state of the system. If the particle is at
vertex i and if i has d(i) outgoing edges, then the probability that the particle follows the edge {i, j}
and moves to a neighbor j is 1/d(i).

1. Show that a random walk on an undirected graph G is aperiodic if and only if G is not bipartite.

2. In the rest of the exercise, we assume that G is not bipartite. Show that a random walk on G

converges to a steady-state distribution π, where πv = d(v)
2|E| .

3. We consider a new Markov chain defined on the edges of G. The current state is defined to be the
pair composed of the edge most recently traversed in the random walk, together with the direction
of this traversal: the state space is hence the set of directed edges. There are 2|E| states in this
new Markov chain, and its transition matrix Q is given by:

Q(u,v),(v,w) =

{
1

d(v) if {u, v} ∈ E
0 otherwise

Compute its steady-state distribution.

4. We denote µv,u the expected number of steps to reach u from v. Show that if {u, v} ∈ E, then
µu,v + µv,u ≤ 2|E| (Hint: use the result of the previous question).

5. The cover time of G is defined as the maximum over all vertices v ∈ V of the expected time to
visit all of the nodes in the graph by a random walk starting from v. Show that the cover time of
G is bounded above by 2|E|(|V | − 1).

6. As an application, suppose we are given an undirected graph G = (V,E) and two vertices s and t in
G, and we want to determine whether there is a path connecting s and t. For simplicity, assume that
the graph G has no bipartite connected components. By standard deterministic search algorithms,
we can easily solve the problem in linear time, using Ω(n) space. Show that the following algorithm
returns the correct answer with probability 1/2, and it only errs by returning that there is no path
from s to t when there is such a path. What is the time and space complexities of this algorithm?
(Hint: you may use the Markov’s inequality, which says for a random variable X and a > 0 that

Pr(|X| ≥ a) ≤ E(|X|)
a .)

s-t Connectivity algorithm
1. Start a random walk from s.
2. If the walk reached t within 2|V |3 steps, return that there is a path. Other-
wise, return that there is no path.

Exercise 6 (ALOHA). A typical situation in a multiple-access satellite communications system is the
following. Users, each one identified with a message, contend for access to a single-channel satellite
communications link for the purpose of transmitting messages. Two or more messages in the air at the
same time jam each other, and are not successfully transmitted. The users are somehow able to detect
a collision of this sort and will try to retransmit later the message involved in a collision. The difficulty
in such communications systems resides mainly in the absence of cooperation among users, who are all
unaware of the intention to transmit of competing users. The slotted ALOHA protocol imposes on the
users the following rules:
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(i) Transmissions and retransmissions of messages can start only at equally spaced moments; the
interval between two consecutive (re-)transmission times is called a slot ; the duration of a slot is
always larger than that of any message.

(ii) All backlogged messages, i.e., those messages having already tried unsuccessfully – maybe more than
once – to get through the link, require retransmission independently of one another with probability
ν ∈ (0, 1) at each slot. This is the so-called Bernoulli retransmission policy.

(iii) The fresh messages – those presenting themselves for the first time – immediately attempt to get
through.

Let Xn be the number of backlogged messages at the beginning of slot n.

1. Supposing there are Xn = k backlogged messages, express the probability bi(k) that i among them
attempt to retransmit in slot n as a function of i, k and ν.

2. Let An be the number of fresh requests for transmission in slot n. The sequence {An}n≥0 is
assumed i.i.d. with the distribution Pr(An = j) = aj . Give a condition over the sequence (aj)j≥0
such that the sequence {Xn}n≥0 is described by an irreducible Markov chain.

3. Show that this chain is not positive recurrent: we say that the system using the Bernoulli retrans-
mission policy is not stable (Hint: one may show that a steady state distribution π would satisfy
limN→∞

πN+1

πN
=∞).

In the following, we admit and use the Pakes’ Lemma:

Let {Xn}n≥0 be an irreducible Markov chain with states N, such that for all
i, n ≥ 0

E(Xn+1 | Xn = i) <∞

and
lim sup
i→∞

E(Xn+1 −Xn | Xn = i) < 0 .

Then the Markov chain is positive recurrent.

4. We now consider a retransmission policy stabilizing ALOHA. Assume the retransmission probability
ν now depends on the number k of backlogged messages. Express the expectations appearing in

Pakes’ Lemma as a function of ν(k), a0, a1 and λ
def
= E(An) =

∑∞
i=1 iai (the so-called traffic

intensity, supposed finite from now on).

5. Using Pakes’ Lemma, design a ν(i) and find a sufficient condition over λ, a0 and a1 for stability of
this protocol.

6. Supposing that the arrivals {Ai} follow a Poisson distribution of parameter λ

ai = e−λ
λi

i!
,

find a condition over λ for the ALOHA protocol to be stable.
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