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Exercise 1. Consider a person walking on the following square.
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The person starts at intersection 1. Then, at every intersection, the person tosses a fair coin and if the
coin turns up heads then the person moves anti-clockwise, otherwise the person moves clockwise.

1. Describe the situation with a finite discrete-time Markov chain, with transition matrix P. Give
the transition graph of the Markov chain. What is the initial distribution π0?

2. Compute the distribution πn = π0 P
n for all natural numbers n. Does this Markov chain admit a

steady-state distribution?

3. Now, consider the same example with different rules. Instead of tossing one faire coin, a person
tosses two fair coins. If the first coin turns up heads then the person decides to stay in the position it
was before; otherwise the person tosses another coin. If the second coin turns up heads, the person
moves anti-clockwise, otherwise the person moves clockwise. Give the new transition matrix Q and
the transition graph. Compute the new distribution πn and study the existence of a steady-state
distribution.

Exercise 2. From the following processes, which are Markov chains? For those that are, supply the
transition matrix. For those that are not, give a Markov chain that is equivalent to this process, if there
exists one.

1. A dice is rolled repeatedly. Let Xn be the largest number shown up to the nth roll.

2. A dice is rolled repeatedly. At time r, let Cr be the time since the most recent six.

3. A dice is rolled repeatedly. At time r, let Br be the time until the next six.

4. Consider a discrete event system X0, X1, X2, . . . with state space S. The process is governed by
two matrices P and Q. If k is even, the values P[i, j] give the probability of going from state i to
state j on the step from Xk to Xk+1. Likewise, if k is odd, the values Q[i, j] give the probability
of going from state i to state j on the step from Xk to Xk+1.

5. Let (Xn) be a Markov chain. Consider the process (Xn, Xn+1)n≥0.

Exercise 3. Consider a (possibly unfair) coin with probability p of tossing a tail. Let Xn be the number
of heads modulo k obtained after n independent tosses of this coin.
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1. Model Xn with a finite Markov chain. Let P be the transition matrix of this Markov chain and j
a column index, compute

∑
i P [i][j].

2. Let wn = maxi πkn[i]−mini πkn[i] and α = (min(p, 1− p))k. For any k ≥ 2:

(i) Show that wn+1 ≤ (1− 2α)wn.

(ii) Deduce from this that:

lim
n→∞

Pr(Xn = 0) =
1

k
.

And give a bound on the rate of convergence.

3. We now want to generalize the result of the previous question. Let M be a square matrix of size k.
We suppose that M is p-regular, i.e. for every i, j, Mp[i, j] > 0. We also assume the existence of
v > 0 (i.e., for all i, v[i] > 0) such that vM = v. Prove that for every v0 ≥ 0, the sequence defined

by vn+1 = vn M admits a limit which is moreover proportional to v (Hint: consider un[i] = vn[i]
v[i] ).

4. We now want to show that that if P is a p-regular stochastic matrix, then the associated Markov
chain admits a unique steady-state distribution:

(i) Define λ = sup{α | ∃v > 0 vP ≥ αv} and show that λ is well-defined and that λ > 0.

(ii) Show that there exists v ≥ 0 such that vP ≥ λ v (Hint: use compactness of the half unit
ball).

(iii) Let v′ = vPp. Show that v′ > 0 and that if vP = λ v then v′P = λ v′.

(iv) Assume vP 6= λ v, show that v′P > λv′.

(v) Deduce that v′P = v′ and conclude.

Exercise 4. We consider here a discrete-time renewal process with delay probability distribution (fi)i∈N∗

having a finite support, i.e., there is a finite set of delays i1 < · · · < ik = N such that: fi 6= 0 iff. there
exists ` ∈ {1, . . . , k} such that i = i`. We want to prove in this special case that if the distribution f is
aperiodic with mean value µ then limn→∞ un = µ−1.

1. Solve the case k = 1.

2. We now suppose that k > 1. Show that if the sequence (un) admits a limit, then it is µ−1.

3. Recall the recurrence relation verified by the sequence (un) and show that 1 is a simple root of the
associated characteristic polynomial.

4. Show that the only root of this characteristic polynomial with radius greater or equal to 1 is 1
itself. Conclude.

Exercise 5. Consider a sequence of independent, fair gambling games between two players. In each
round, a player wins a coin with probability 1/2 or loses a coin with probability 1/2. The state of the
system at time n is the number of coins won by player 1. The initial state is 0. Assume that there are
numbers `1 and `2 such that player i cannot lose more than `i coins, and thus the game ends when it
reaches one of the two states −`1 or `2. At this point, one of the gamblers is ruined.

1. Describe the Markov chain associated with this game and find the probability that player 1 wins
`2 coins before losing `1 coins.

2. Classify the states and find again the probability that player 1 wins `2 coins before losing `1 coins,
using this classification.

3. Solve the problem in the case of an unfair game with a probability p > 1/2 for player 1 to lose one
coin on each round.

2



Exercise 6. We give a very simplified version of the internet assumed by the PageRank algorithm
employed by search algorithms (for example, by Google). The algorithm assumes that the internet
consists of some webpages which have hyperlinks to other webpages. The person browsing the internet
decides (probabilistically) whether to click on one of these links or visit a new page by entering it in the
address bar.

Assuming that there are N webpages in the world named p1, . . . , pN , the PageRank algorithm creates
a Markov chain M with N states {p1, . . . , pN}. If the webpage pi has links to every other page then we
let P[i, j] = 1

N−1 for every j 6= i. If pi has links to N ′ < N − 1 webpages then P[i, j] = 0.85
N ′ if pi has a

link to page pj (j 6= i) and P[i, j] = 0.15
N−N ′−1 if pi does not have a link to page pj (j 6= i). The initial

distribution of M assigns probability 1
N to each of the states.

1. Is the Markov chain aperiodic?

2. Is the Markov chain irreducible?
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