TD5

Chargé de TD : Adrien Koutsos

adrien.koutsos@lsv.fr

Exercice 1 (Machines à registres/de Minsky)

Une machine à registres est donnée par un ensemble fini d'états (contenant les états **accept** et **reject**), un état initial q_0 , N registres $r_1, ..., r_N$ et une fonction de transition de $Q \times \{0,1\}^N$ dans $Q \times \{+1,0,-1\}^N$: $\delta(q,\alpha_1,...,\alpha_N) = (q',d_1,...,d_N)$ telle que si $\alpha_I = 0$, alors $d_i \neq -1$.

Une configuration de la machine est donnée par N entiers en base 1 (les contenus de registres) et un état. Un mouvement de la machine est une relation entre configurations :

$$q, k_1, ..., k_N \vdash_M q', k'_1, ..., k'_N$$

ssi il existe une transition de la machine :

$$\delta(q,\alpha_1,...,\alpha_N) = (q',d_1,...,d_N)$$

telle que $\alpha_i = 0$ si $k_i = 0$ et $\alpha_i = 1$ sinon, et, pour tout $i, k'_i = k_i + d_i$.

Un calcul de la machine sur la donnée n_0 est une suite de configurations, la première étant la configuration initiale $(q_0, n_0, 0, ..., 0)$ et telle que la *i*ème configuration est obtenue par un mouvement de la machine sur la i – 1ème configuration.

Une machine à registres accepte l'entier n_0 , si le calcul de M sur n_0 s'arrête en accept.

- 1. Soit k > 1. Montrer qu'on peut construire une machine à registres M_k telle que, sur la donnée $n \in \mathbb{N}$, M_k s'arrête dans une configuration où le premier registre contient r et le deuxième registre contient q, où q et r sont respectivement le quotient et le reste de la division euclidienne de n par k.
- 2. Soit $\Sigma \setminus \{\$, B\} = \{a_1, ..., a_k\}$. Pour $w \in (\Sigma \setminus \{\$, B\})^*$, on note $c_k(w)$ l'entier dont l'écriture en base k+1 est w. Montrer que, si L est récursivement énumérable, il existe une machine à 4 registres qui accepte $\{c_k(w) \mid w \in L\}$.
- 3. Montrer le même résultat que celui de la question précédente, mais avec une machine à 2 registres (au lieu de 4). ¹
- 4. Montrer que le problème de savoir si une machine à 2 registres accepte au moins un entier est indécidable.

^{1.} Indication : on pourra considérer le codage de 4 entiers en un seul par $\overline{(n_1, n_2, n_3, n_4)} = 2^{n_1} \times 3^{n_2} \times 5^{n_3} \times 7^{n_4}$.

Exercice 2

Cet exercice s'intéresse au problème de savoir si on peut contrôler un système pour atteindre un but donné.

Nous appelerons fonction affine une application $f_{M,V}$ de \mathbb{R}^n dans \mathbb{R}^n donnée par une matrice $n \times n$ M à coefficients dans \mathbb{Q} et un vecteur $V \in \mathbb{Q}^n$

$$f_{M,V}(X) = MX + V$$

Étant donné un ensemble S d'applications de \mathbb{R}^n dans \mathbb{R}^n , une trajectoire d'un point $A \in \mathbb{R}^n$ sous l'action de S est une suite A_0, \ldots, A_m telle que $A_0 = A$ et, pour tout $0 \le i < m$, il existe $f \in S$ telle que $f(A_i) = A_{i+1}$. Soit $E \subseteq \mathbb{R}^n$. Une trajectoire de A sous l'action de S passe par E s'il existe une trajectoire $A_0 \cdots A_m$ partant de A telle que $A_m \in E$.

Montrer que le problème suivant est indécidable :

Donnée : Un ensemble fini S de fonctions affines de \mathbb{R}^2 dans \mathbb{R}^2 et deux vecteurs $A, B \in \mathbb{Q}^2$

Question: Existe-t-il une trajectoire de A qui passe par B?

Exercice 3 (Carreleur)

On se donne un ensemble fini $C = \{W, P, R, G, B, \ldots\}$ de couleurs. Un domino est un quadruplet de couleurs $(c_L, c_T, c_R, c_B) \in C^4$, que l'on peut représenter graphiquement comme au tableau. Etant donné un ensemble fini D de dominos et un domino distingué $d_0 \in D$, un pavage de $\mathbb{N} \times \mathbb{N}$ par D est une application de $p : \mathbb{N} \times \mathbb{N} \mapsto D$ telle que:

- $-p(0,0) = d_0;$
- $\begin{array}{l} \text{ Si } (i,j) \in \mathbb{N} \times \mathbb{N}, \ p(i,j) = (c_L^{i,j}, c_T^{i,j}, c_R^{i,j}, c_B^{i,j}), \ \text{et} \\ p(i,j+1) = (c_L^{i,j+1}, c_T^{i,j+1}, c_R^{i,j+1}, c_B^{i,j+1}) \ \text{alors} \ c_T^{i,j} = c_B^{i,j+1}; \\ \text{ Si } (i,j) \in \mathbb{N} \times \mathbb{N}, \ p(i,j) = (c_L^{i,j}, c_T^{i,j}, c_R^{i,j}, c_B^{i,j}), \ \text{et} \\ p(i+1,j) = (c_L^{i+1,j}, c_T^{i+1,j}, c_R^{i+1,j}, c_B^{i+1,j}) \ \text{alors} \ c_R^{i,j} = c_L^{i+1,j}. \end{array}$

Montrer que le problème suivant est indécidable ou montrer qu'il est décidable :

1. Donnée: un ensemble fini de couleurs C, un ensemble fini de dominos Dsur C et un domino $d_0 \in D$.

Question : Existe-il un pavage de \mathbb{N}^2 par D?

Exercice 4

Montrer que PCP reste indécidable si on se restreint à des mot de longueur au plus 2. Qu'en est-il si on se retreint à des mots de longueur exactement 2?