Orders.

Exercice 1:

Let E be a set with a partial order \leq. Recall that an antichain is a subset of E in which all the elements are incomparable.

1. We consider \mathbb{N}^{2} with the product order $((a, b) \leq(x, y) \Longleftrightarrow a \leq x \wedge b \leq y)$
(a) Show an antichain of cardinality n, for any $n>1$.
(b) Can we find an infinite antichain?
2. Show that the set Σ^{*} with the sub-string order $\left(w_{1}<w_{2}\right.$ iff $\exists u, v \in \Sigma^{*}$ s.t. $\left.w_{2}=u w_{1} v\right)$, has an infinite chain.

Exercice 2:

Given $A, B \in \mathcal{P}([n])$ we say that $A<B$ iff $A \subset B$.

1. Assume that $n>1$. Show that:

$$
1<\binom{n}{1}<\binom{n}{2}<\cdots<\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor} \geq \cdots>\binom{n}{n-2}>\binom{n}{n-1}>1
$$

2. For $k \in\left\{1, \ldots, \frac{n}{2}\right\}$ find an antichain of cardinality $\binom{n}{k}$ in $\mathcal{P}([n])$.
3. Let A be an anti chain in $\mathcal{P}([n])$. For k in $\llbracket 0, n \rrbracket$, we denote by a_{k} the number of sets of cardinality k in A. We will now show the Lubell-Yamamoto-Meshalkin inequality :

$$
\sum_{k=0}^{n} \frac{a_{k}}{\binom{n}{k}} \leq 1
$$

(a) Demonstrate that there are exactly n ! Strictly increasing chains in $\mathcal{P}([n])$, of the form $X_{0}=\emptyset \subsetneq X_{1} \subsetneq X_{2} \subsetneq \cdots \subsetneq X_{n}=X$.
(b) Let S be a subset of X of cardinality s. Show that there are exactly $s!(n-s)$! strictly increasing chains in $\mathcal{P}([n])$, of the form $X_{0}=\emptyset \subsetneq X_{1} \subsetneq X_{2} \subsetneq \cdots \subsetneq X_{n}=X$, where $X_{s}=S$.
(c) Let $X_{1} \subsetneq X_{2} \subsetneq \cdots \subsetneq X_{r}$ a strictly increasing chains in $\mathcal{P}([n])$. Then there is at most one X_{i} in A (the antichain). By partitioning all the strictly increasing sequences $X_{0}=\emptyset \subsetneq X_{1} \subsetneq X_{2} \subsetneq \cdots \subsetneq X_{n}=X$, according to their possible intersection with A, demonstrate the Lubell-Yamamoto-Meshalkin inequality.
4. Deduce the maximal cardinality of an antichain in $\mathcal{P}([n])$.

Exercice 3:

Show 2 of the following :
Let $\left(R_{i}\right)_{i \in I}$ a family of binary relationships on the set E. Let $R=\cap_{i \in I} R_{i}$. In other words, $x R y$ if $x R_{i} y$ for all $i \in I$.

- If one of the R_{i} 's is irreflexive/asymmetric/antisymmetric, then R is too.
- If all R_{i} 's are reflexive/symmetric/transitives, then R is too
- The intersection does not preserve totality or trichotomy.

Exercice 4:

Show 2 of the following :
Let R be a relation on the set E, and $F \subseteq E$. If R is reflexive / symmetric / transitive / total / antisymmetric / irreflexive / asymmetric / trichotomous, then R_{F} is the same.

Exercice 5:

Show 2 of the following :
If R is reflexive / symmetric / transitive / total / antisymmetric / irreflexive / asymmetric $/$ trichotomous, Then R^{-1} is the same.

Exercice 6:

Show the following propositions :

- If (E, \leq) is a finite ordered set and $x \in E$. There is a maximal element y in E s.t. $x \leq y$.
- If any finite part of an ordered set has a greatest element, then it is a total order.

Exercice 7:

Show that the lexicographic product of (total) orders is a (total) order.
For all $x, y \in \prod_{i \in I}\left(E_{i}, \leq_{i}\right), x \leq_{l e x} y$ iff given $k:=\min \left\{j \in I \mid x_{j} \neq y_{j}\right\}$ we have $x_{k} \leq_{k} y_{k}$.

Exercice 8:

Let E be a set with a prtial order denoted by \preccurlyeq. We say that \preccurlyeq is a well quasi-order(wqo) if from any sequence of elements of E, we can extract an infinite monotone increasing sequence. I.e. $\forall\left(x_{i}\right)_{i \in \mathbb{N}} \in E^{\mathbb{N}}$, there exists an increasing sub-sequence of indexes : $i_{0}<i_{1}<$ $\cdots<i_{n}<\cdots$ for which the sequence $\left(x_{i_{n}}\right)_{n \in \mathbb{N}}$ is increasing : $x_{i_{0}} \preccurlyeq x_{i_{1}} \preccurlyeq \cdots \preccurlyeq x_{i_{n}} \preccurlyeq \cdots$.

1. Show that if the order \preccurlyeq is total, then it is wqo iff any non-empty subset of E has a least element.
2. Give an example of a total ordered set which is not wqo.
3. Show that the following are equivalent:
(def1) The ordered set (E, \preccurlyeq), is wqo.
(def2) For any sequence $\left(x_{i}\right)_{i \in \mathbb{N}}$, we can find $i<j$ s.t. $x_{i} \preccurlyeq x_{j}$.
(def3) (i) There is no infinite sequence strictly decreasing in E,
(ii) There is no infinite antichain.
4. Let E, \preccurlyeq be an ordered set, we call it well founded if there is no infinite decreasing sequence. Assume that E is countable and show that the order is wqo iff the set of all antichains is countable.
5. Dickson's Lemma : Let $\left(E_{1}, \preccurlyeq_{1}\right)$ and $\left(E_{2}, \preccurlyeq_{2}\right)$ be a wqo set. Show that $\left(\preccurlyeq_{1}, \preccurlyeq_{2}\right)$ is a wqo on the product $E_{1} \times E_{2}$.
6. Higman's Lemma : Let \preccurlyeq be a wqo on Σ. Define a relationship on Σ^{*} as follows :

$$
a_{1} \ldots a_{m} \leq_{s w} b_{1} b_{2} \ldots b_{n} \Leftrightarrow\left\{\begin{array}{l}
\exists 1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq n \\
a_{1} \preccurlyeq b_{i_{1}} \wedge a_{2} \preccurlyeq b_{i_{2}} \cdots a_{m} \preccurlyeq b_{i_{m}}
\end{array}\right.
$$

(a) Show that $\leq_{s w}$ is an order
(b) Show that $\leq_{s w}$ is wqo.
7. Let E, \leq be an ordered set, and $F \subset E$ s.t. : $\forall y \in E$, if there exists $x \in F$ s.t $x \preccurlyeq y$, then $y \in F$ (we say that the set F is upward closed or upper).
(a) Let E, \leq be wqo. Show that a that any increasing sequence of upward closed sets is stationary, i.e. $F_{1} \subseteq F_{2} \subseteq \cdots$ there exists i such that for any $j>i F_{i}=F_{j}$.
(b) Show that if F is an upward closed set, there exists a finte set of elements x_{1}, \ldots, x_{n} in F s.t. $F=\cup_{i}\left\{y \in E, x_{i} \preccurlyeq y\right\}$.

Exercice 9 (Dilworth's theorem) :

Let (E, \leq) be a finite ordered set..
Let F be a non-empty subset of E. Denote by $\operatorname{Max}(F)$ all of its maximal elements.

1. if F is a non-empty subset of E, show that $\operatorname{Max}(F)$ is a non-empty subset of F.
2. If F is a non-empty subset of E, show that $\operatorname{Max}(F)$ is an antichain and that it is maximal(inclusion-wise) of the antichains in F

We now show by induction on $|E|$, Dilworth's theorem :
Let k be the maximal cardinality of an antichain in E. Then E is a disjoint union of k chains(a set of comparable elements).
3. Demonstrate the result when $k=1$.
4. Suppose that $k>1$. Let $z \in \operatorname{Max}(E)$ and $F=E \backslash\{z\}$. Let l the maximal cardinality of an antichain in F; by induction assumption F is a disjoint union of chains C_{1}, \ldots, C_{l}.
(a) Give a bound on k as a function of l.
(b) Let \mathcal{C} be an antichain of E. What can we say about $\mathcal{C} \cap C_{i}$, for $i \in[l]$?
(c) Let $i \in[l]$. We denote by D_{i} the set of elements of C_{i} that are in an antichain of cardinality l in F.
i. Show that D_{i} isn't empty.

Denote by y_{i} the maximal element of D_{i}.
ii. Show that $\left\{y_{1}, \ldots, y_{l}\right\}$ is an antichain of F.
iii. Assume that for every i, z is incomparable to y_{i}. Conclude Dilworth's theorem for this case.
iv. Assume that there exists an i s.t. z is comperable to y_{i}. Let $C^{\prime}=\{z\} \cup\{x \in$ $\left.C_{i} \mid x \leq y_{i}\right\}$. Show that C^{\prime} is a chain and that $F \backslash C^{\prime}$ does not contain an antichain of cardinality l. Conclude Dilworth's theorem.

