Equivalence relations.

Exercice 1:

Can we do without one of the three properties required to define equivalence relations ?

Exercice 2:

Let f be an involution (i.e. $f \circ f=I d$) on a finite set E.

1. Show that the cardinality of all the fixed points of E is of the same parity as the cardinal of E.
2. Deduce that if E is of an odd cardinal, f has (at least) a fixed point.

Exercice 3:

A relationship is given by a matrix $T \in\{0,1\}^{N \times N}$. Where if $T[i, j]=1$ then $i \mathcal{R} j$, and $T[i, j]=0$, otherwise. What conditions does the matrix needs to exhibit in order for the relationship to be an equivalence relation.

Exercice 4:

Show that the following relation \sim on $(\mathbb{Z} \times(\mathbb{N} \backslash\{0\}))$:

$$
(m, n) \sim(p, q) \Leftrightarrow m q=n p
$$

is an equivalence relation and show that the following operations respect the equivalence relation:

1. $(m, n) \oplus(p, q)=(m q+n p, n q)$
2. $(m, n) \cdot(p, q)=(m p, n q)$

Exercice 5 (Équivalence de Nérode) :

Let $\mathcal{A}=\left(Q, \Sigma, \delta, i_{o}, F\right)$ a deterministic automaton, where Q represents the set of states, Σ the alphabet, δ the transition function, i_{o} the initial state and F the set of final states.
Let \sim be an equivalence relation on Q s.t. :

- For all states $p, q \in Q$, if $p \sim q$, then for all a in $\Sigma, \delta(p, a) \sim \delta(q, a)$.
- If $p \in F$, for all q in \mathcal{A} s.t. $p \sim q$, then q is also in F.

For all states p, denote their equivalence class by $C(p)$.

1. (a) Demonstrate that the following is a deterministic automaton:

$$
\mathcal{A}_{\sim}=\left(Q / \sim, \Sigma, \delta_{\sim}, C\left(i_{o}\right), F / \sim\right)
$$

where Q / \sim is the set of the equivalence classes, $\delta_{\sim}(C(p), a)=C(\delta(p, a)), F / \sim$ is the set of equivalence classes of the states of F.
(b) Demonstrate that $L(\mathcal{A})=L\left(\mathcal{A}_{\sim}\right)$.
2. We define for all integers n, an equivalence relation on Q : For all states p and q of \mathcal{A}, $p \sim_{n} q$ if for all the words $|w| \leq n, \delta(p, w) \in F \Leftrightarrow \delta(q, w) \in F$. Show that :
(a) For all the states p and q of $\mathcal{A}, p \sim_{n+1} q \Rightarrow p \sim_{n} q$.
(b) There exists n s.t. $\sim_{n+1}=\sim_{n}$.

Order relations.

Exercice 6 :

Show that:

1. Every asymmetrical relationship $(a R b \rightarrow \neg(b R a))$ is anti-symmetric and irreflexive.
2. Every strict order is asymmetrical.
3. Every trichotomous relation(one of the following holds $x R y, y R x$ or $x=y$) is asymmetrical.

Let (E, \leq) an ordered set, i.e. \leq is an order on E.

- $x \in E$ is the greatest element of E if $\forall y \in E, y \leq x$.
- $x \in E$ is a maximal element of E if $\forall y \in E, x \leq y \Rightarrow x=y$.
- the minimal element and the least element are defined analogously.

Let $F \subseteq E$.

- $x \in E$ is a upper bound of F if $\forall y \in F, y \leq x$.
- $x \in E$ is a lower bound of F if $\forall y \in F, x \leq y$.

Exercice 7 :

Let (E, \leq) an ordered set.
What is the upper bound of \emptyset ? what is the lower bound of \emptyset ?

Exercice 8 :

1. We consider the set of numbers whose representation in base 2 has exactly n numbers. Describe precisely using this representation the Successeur function.
2. Denote \mathcal{S}_{n} the set of bijections of $\{1, \ldots, n\}$ to itself. Recall that the cardinality of \mathcal{S}_{n} is n !.
A bijection f of the set $\{1, \ldots, n\}$ to itself is coded by n numbers in base $n: f(1) f(2) \cdots f(n)$. The lexicographic order thus defines a total order on \mathcal{S}_{n}.
(a) Show the entire order for the cases $n=2$ and $n=3$ exhaustively.
(b) What is the smallest element of \mathcal{S}_{n} ?
(c) What is the biggest element of \mathcal{S}_{n} ?
(d) Give an algorithm that from the representation of a bijection, that calculates its position in the order.
(e) Describe the precisely Successeur function.

Exercice 9 :

Let E be a set with a partial order \leq. Recall that an antichain is a subset of E in which all the elements are incomparable.

1. We consider \mathbb{N}^{2} with the product order $((a, b) \leq(x, y) \Longleftrightarrow a \leq x \wedge b \leq y)$
(a) Show an antichain of cardinality n, for any $n>1$.
(b) Can we find an infinite antichain?
2. Show that the set Σ^{*} with the sub-string order ($w_{1}<w_{2}$ iff $\exists u, v \in \Sigma^{*}$ s.t. $w_{2}=u w_{1} v$, has an infinite chain.

Exercice 10 :

Given $A, B \in \mathcal{P}([n])$ we say that $A<B$ iff $A \subset B$.

1. Assume that $n>1$. Show that:

$$
1<\binom{n}{1}<\binom{n}{2}<\cdots<\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor} \geq \cdots>\binom{n}{n-2}>\binom{n}{n-1}>1
$$

2. For $k \in\left\{1, \ldots, \frac{n}{2}\right\}$ find an antichain of cardinality $\binom{n}{k}$ in $\mathcal{P}([n])$.
3. Let A be an anti chain in $\mathcal{P}([n])$. For k in $\llbracket 0, n \rrbracket$, we denote by a_{k} the number of sets of cardinality k in A. We will now show the Lubell-Yamamoto-Meshalkin inequality :

$$
\sum_{k=0}^{n} \frac{a_{k}}{\binom{n}{k}} \leq 1
$$

(a) Demonstrate that there are exactly n ! Strictly increasing sequences in $\mathcal{P}([n])$, of the form $X_{0}=\emptyset \subsetneq X_{1} \subsetneq X_{2} \subsetneq \cdots \subsetneq X_{n}=X$.
(b) Let S be a subset of X of cardinality s. Show that there are exactly $s!(n-s)$! strictly increasing sequences in $\mathcal{P}([n])$, of the form $X_{0}=\emptyset \subsetneq X_{1} \subsetneq X_{2} \subsetneq \cdots \subsetneq X_{n}=X$, where $X_{s}=S$.
(c) Let $X_{1} \subsetneq X_{2} \subsetneq \cdots \subsetneq X_{r}$ a strictly increasing sequence in $\mathcal{P}([n])$. Then there is at most one X_{i} in A (the antichain). By partitioning all the strictly increasing sequences $X_{0}=\emptyset \subsetneq X_{1} \subsetneq X_{2} \subsetneq \cdots \subsetneq X_{n}=X$, according to their possible intersection with A, demonstrate the Lubell-Yamamoto-Meshalkin inequality.
4. Deduce the maximal cardinality of an antichain in $\mathcal{P}([n])$.

Bonus question.

Exercice 11 :

Using Équivalence de Nérode deduce an algorithm for calculating the minimum automaton of \mathcal{A}.

