Leftovers from last week :

1. Show that $\forall\left(n_{r}, n_{b}\right) \in \mathbb{N}^{2}, \exists N \in \mathbb{N}$ such that, for any 2 (edge) coloring $\{r, b\}$ of the complete graph K_{N}, there exists a color $c \in\{r, b\}$ for which there is a complete sub-graph $K_{n_{c}}$ which is monochromatic in the color c.
(the smallest N for which this property holds is denoted by $R\left(n_{r}, n_{b}\right)$).
2. Show that $\forall k \in \mathbb{N}, \forall\left(n_{1}, n_{2}, \ldots, n_{k}\right) \in \mathbb{N}^{k}, \exists N \in \mathbb{N}$ such that, for any k (edge) coloring of the complete graph K_{N}, there exists a color $c \in \llbracket 1, k \rrbracket$ for which there is a complete sub-graph $K_{n_{c}}$ which is monochromatic in the color c.
(the smallest N for which this property holds is denoted by $R\left(n_{1}, \ldots, n_{k}\right)$).

Exercice 0:

1. Let E and F two countable sets. Show that $E \cup F$ is countable.
2. Let E_{1}, \ldots, E_{n} be countable sets. Show that $\prod_{i=1}^{n} E_{i}$ is countable.

Combinatorial reasoning

Exercice 1:

Demonstrate by combinatorial arguments the identity :

$$
\forall n \in \mathbb{N},\binom{3 n}{3}=3\binom{n}{3}+6 n\binom{n}{2}+n^{3}
$$

Applications of the pigeonhole principle

Exercice 2:

Some arcs of a circle with a diameter 1 were colored. The sum of the lengths of the colored arcs is $>\pi / 2$. Show that there exists a diameter of the circle, for which both ends are colored.

Exercice 3:

Let m_{1}, \ldots, m_{n+1} be $n+1$ numbers, chosen from the set $[2 n]$.
Show that there exist a pair $i, j, 1 \leq i \neq j \leq n+1$ such that m_{i} is divisible by m_{j}.

Cardinalities.

Exercice 4:

Show that the family of all the finite sets of \mathbb{N} is countable.

Exercice 5:

Show that the set of decimal numbers is countable.

Exercice 6:

Let Σ be a finite alphabet.

1. Show that the set of finite trees on Σ is countable.
2. Show that Σ^{∞} isn't countable (unless it $|\Sigma|=1$)

Exercice 7:

Give an example of an uncountable family $F \subseteq P(\mathbb{N})$, such that for any $A \neq B \in F, A \cap B$ is finite.

Exercice 8:

By using Cantor-Schröder-Bernstein theorem, show that $\{0,1\}^{\mathbb{N}}, \mathbb{N}^{\mathbb{N}}$ and \mathbb{R} are equipotent.

Exercice 9 :

Another way to show that $[0,1]$ is a uncountable set.
Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ a series of real numbers in the interval $[0,1]$.

1. Construct recursively a sequence of closed intervals I_{n} of length >0 such that :

- $I_{0} \subset[0,1]$,
- $I_{n} \subset I_{n-1}$,
- I_{n} are intervals of length >0 that do not contain x_{n}.

2. Deduce that $[0,1]$ is uncountable.

Exercise 10 (Stern-Brocot tree) :

In this exercise we'll show a way to represent strictly positive rational numbers in the form of an infinite binary tree.
We start we two imaginary vertices $0 / 1$ (which represents 0) and $1 / 0$ (which represent infinity). Each step we insert between each two of the consecutive fractions m_{1} / n_{1} and m_{2} / n_{2} the fraction $\left(m_{1}+m_{2}\right) /\left(n_{1}+n_{2}\right)$.
Thus, we obtain after four stages :

1) init: $\left[\frac{0}{1}, \frac{1}{0}\right]$
2) $\left[\frac{0}{1}, \frac{1}{1}, \frac{1}{0}\right]$
3) $\left[\frac{0}{1}, \frac{1}{2}, \frac{1}{1}, \frac{2}{1}, \frac{1}{0}\right]$
4) $\left[\frac{0}{1}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{1}{1}, \frac{3}{2}, \frac{2}{1}, \frac{3}{1}, \frac{1}{0}\right]$
5) $\left[\frac{0}{1}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{1}{1}, \frac{4}{3}, \frac{3}{2}, \frac{5}{3}, \frac{2}{1}, \frac{5}{2}\right.$,

1. Verify that for $m_{1} / n_{1}<m_{2} / n_{2}$, we have $m_{1} / n_{1}<\left(m_{1}+m_{2}\right) /\left(n_{1}+n_{2}\right)<m_{2} / n_{2}$.
2. Show that for any step and for any two consecutive fractions $m_{1} / n_{1}<m_{2} / n_{2}$, we have $n_{2} m_{1}-m_{2} n_{1}= \pm 1$.
3. Deduce that the fractions constructed by this process are in an irreducible form (i.e. the numerator and the denominator greatest common divisor is 1).
4. Let p / q be a strictly positive rational represented by an irreducible fraction. Suppose that $\frac{m_{1}}{n_{1}}<\frac{p}{q}<\frac{m_{2}}{n_{2}}$ and show that $m_{1}+m_{2}+n+n_{2} \leq p+q$ (where $\frac{m_{1}}{n_{1}}$ and $\frac{m_{2}}{n_{2}}$ are two consecutive fractions).
5. Let p / q be a strictly positive rational number represented by an irreducible fraction. Show that it appears uniquely in the construction.
6. Conclude that \mathbb{Q}^{*+} is countable.
