Exercice 0:

1. Show that $[n]$ has n ! permutation. $([n]=\{1,2, \ldots, n\})$
2. Let $n, m \in \mathcal{N}$ and $\left(x_{i}\right)_{i \in \llbracket 1, m n+1 \rrbracket}$ be a sequence of natural numbers. Show that the given sequence admits an non-decreasing sub-sequence of length $n+1$ or a non-increasing sub-sequence of length $m+1$.

Exercice 1:

Prove the following identities using combinatorial arguments :

1. $\sum_{0 \leq 2 i \leq n}\binom{n}{2 i}=2^{n-1}$ et $\sum_{0 \leq 2 i+1 \leq n}\binom{n}{2 i+1}=2^{n-1}$.
2. $\sum_{i=0}^{n} i\binom{n}{i}=n 2^{n-1}$.
3. $\binom{n}{l}\binom{l}{k}=\binom{n}{k}\binom{n-k}{l-k}$, for $0 \leq k \leq l \leq n$.
4. Given $m, n \in \mathcal{N}$ such that $1 \leq m \leq n$.

$$
\sum_{i=m}^{n}\binom{n}{i}\binom{i}{m}=2^{n-m}\binom{n}{m}
$$

5. For all $n \geq 2$:

$$
\binom{2 n}{2}=2\binom{n}{2}+n^{2}
$$

6. For all $n \geq 3$:

$$
\sum_{k=3}^{n} k(k-1)(k-2)\binom{n}{k}=n(n-1)(n-2) 2^{n-3}
$$

Exercice 2:

Let $N>0$ be a natural number

1. Let \mathcal{E}_{2} be the a family consisting of all subsets of size 2 of the set $[N]$. Partition the family \mathcal{E}_{2} in a good manner in order to recover the equality :

$$
\sum_{j=1}^{N-1} j=\frac{N(N-1)}{2}
$$

2. By partitioning the set $[N]^{3}$ according to the maximal value of its items (i.e. (x, y, z) and $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ are in the same partition if $\left.\max (x, y, z)=\max \left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right)$, recover a the expression $\sum_{j=1}^{N-1} j^{2}$ as a function of N.

Exercice 3:

Given n_{1}, \ldots, n_{12} a familly of 12 integers. Show there exist $i \neq j$ such that $n_{i}-n_{j}$ is a multiple of 11 (i.e. $\left.\left(n_{i}-n_{j}\right) \bmod 11=0\right)$.

Exercice 4:

Show that, in a group of 6 people there always exists either a sub-group of 3 people who don't know each other, or a sub-group of 3 people who all know each other.

Exercice 5:

A pass word is considered valid if it satisfies the following conditions :

- It consists of 8 characters taken from the 26 letters of the alphabet, the numbers 0 et 9 , and the 7 special characters !, ?, \%, \#, @, \&, \$.
- It includes at least one letter from the alphabet.
- It includes at least one number.
- It includes at least one special character.

Determine the number of valid passwords.

Exercice 6:

Let $m, n \in \mathcal{N}$. Denote by $s(m, n)$ the number of surjective function from the set $[m]$ to the set $[n]$.

1. What is $s(m, n)$ if $m<n$? and if $m=n$?
2. Prove the following formula using the inclusion-exclusion principle :

$$
s(m, n)=n^{m}-n(n-1)^{m}+\binom{n}{2}(n-2)^{m}+\cdots+(-1)^{k}\binom{n}{k}(n-k)^{m}+\cdots+(-1)^{n} n
$$

Exercice 7 (Ramsey's theorem) :

1. Show that $\forall\left(n_{r}, n_{b}\right) \in \mathbb{N}^{2}, \exists N \in \mathbb{N}$ such that, for any 2 (edge) coloring $\{r, b\}$ of the complete graph K_{N}, there exists a color $c \in\{r, b\}$ for which there is a complete subgraph $K_{n_{c}}$ which is monochromatic in the color c.
(the smallest N for which this property holds is denoted by $R\left(n_{r}, n_{b}\right)$).
2. Show that $\forall k \in \mathbb{N}, \forall\left(n_{1}, n_{2}, \ldots, n_{k}\right) \in \mathbb{N}^{k}, \exists N \in \mathbb{N}$ such that, for any k (edge) coloring of the complete graph K_{N}, there exists a color $c \in \llbracket 1, k \rrbracket$ for which there is a complete sub-graph $K_{n_{c}}$ which is monochromatic in the color c.
(the smallest N for which this property holds is denoted by $R\left(n_{1}, \ldots, n_{k}\right)$).
