Submission date : 02.10.2019
Submission style : You may submit your HW by one of the following ways :

- Hand-written in English and submitted to me during the T.D.
- LATEX file + PDF in French, sent to me by email.
- LATEX file + PDF in English, sent to me by email - which will get you an extra 1 point bonus(where the maximum is 20).
Email : khmelnitsky@lsv.fr

Solve the following exercise :

Exercice 1:

Show that $\forall k \in \mathbb{N}, \forall\left(n_{1}, n_{2}, \ldots, n_{k}\right) \in \mathbb{N}^{k}, \exists N \in \mathbb{N}$ such that, for any k (edge) coloring of the complete graph K_{N}, there exists a color $c \in \llbracket 1, k \rrbracket$ for which there is a complete sub-graph $K_{n_{c}}$ which is monochromatic in the color c.
(the smallest N for which this property holds is denoted by $R\left(n_{1}, \ldots, n_{k}\right)$).
Exercice 2 (Cantor's set) :
Let $I=[a, b]$ an interval of length $\delta=b-a$. Let $\rho(I)=\left[a, a+\frac{\delta}{3}\right] \cup\left[b-\frac{\delta}{3}, b\right]$. ρ cuts the interval I in to three closed intervals of equal length and removes interior of the middle one. We extend ρ to closed unions of disjoint closed intervals by making ρ act on each of the intervals separately.
Cantor set is $C=\cap_{n \in \mathbb{N}} F_{n}$, where F_{n} is defined recursively on n :

$$
F_{0}=[0,1] \text { and } F_{n+1}=\rho\left(F_{n}\right)
$$

1. Show that C is closed, non-empty and of "length" 0 (We mean the length of the sum of the intervals contained in it (but what we really want to say is the measure :))).
2. Let $n \in \mathbb{N}$. Show that F_{n} is a union of 2^{n} intervals $\cup_{i=1}^{2^{n}}\left[a_{i}, b_{i}\right]$. The ordered sequence $a_{0}, a_{1}, \ldots, a_{2^{n}}$ where the items are of the form $\frac{\sum_{i=1}^{n} x_{i} 3^{i}}{3^{n}}$, where $x_{i} \in\{0,2\}$ (elements of $[0,1]$ in base 3 which have at most n digits and constitute of 0 and 2) and $b_{i}=a_{i}+\frac{1}{3^{n}}$.
3. Deduce that C consists of all the numbers in $[0,1]$ whose base 3 representation has only 0's and 2's.
4. Build a bijection from C to $[0,1]$, using (3).
5. Deduce that C is uncountable.
