TP - Architecture et Système - 03

04 October 2019

1 De Bruijn sequences

In this part of the exam, we will develop an efficient method to count the number of trailing zero bits in a given (unsigned) integer value x such that $x>0$. Equivalently, we can compute the position of the least significant bit whose value is 1 . Incidentally, one concrete application - when x has 64 bits - is to encode the positions of pieces on a chess board and iterate over these. Here however, we will simplify matters by assuming that x has only 8 bits.

An index in a bit string is identified from right to left starting at zero. E.g., for $x=$ $(10110100)_{2}$, the bits of x at index 0 and 1 are 0 , and the bit with index 2 is 1 .

Given $x \in \mathbb{N}$ such that $0<x<2^{8}$, we will be interested in implementing a function $\ell:\left\{1, \ldots, 2^{8}-1\right\} \rightarrow\{0, \ldots, 7\}$ such that $\ell(x)$ is equal to smallest index that is set to 1 in the binary representation of x. In the example above, we have $\ell(x)=2$.

In principle, we could solve the problem using the C function below, which shifts x to the right until the least significant bit is 1 .

```
unsigned int l (unsigned int x) { // we assume 0 < x < 256
    int result = 0;
    while (x & 1 == 0) {
        result++;
        x = x >> 1;
    }
    return result;
}
```

However, the running time of this function depends on the number of bits in x. We will develop another algorithm that has constant running time, i.e. independent of the actual number of zeros. To this end, we will study de Bruijn sequences. A de Bruijn sequence $s(n)$ of order n is a cyclic bit string such that every binary string of length n occurs exactly once in s. Cyclic means that once you reach the end of $s(n)$ you may continue at the beginning of $s(n)$. For example, for $n=2$ we can set $s(n)=0011$ since $00,01,10$ and 11 can all be found in $s(n)$; in particular 10 starts at index 0 of $s(n)$ and then continues at index 3 of $s(n)$.

An obvious lower bound for the minimal length of a de Bruijn sequence $s(n)$ is 2^{n}. We will see that a sequence of this length can always be found, then use it to achieve our initial goal.
(a) (3 points) De Bruijn sequences can be obtained from paths in de Bruijn graphs. The vertices of a de Bruijn graph of order n are all bit strings of length n. There is a directed edge between two vertices $b_{1} b_{2} \cdots b_{n}$ and $c_{1} c_{2} \cdots c_{n}$ if and only if $b_{2}=c_{1}, b_{3}=$ $c_{2}, \ldots, b_{n}=c_{n-1}$. The figure below depicts the de Bruijn graph of order 2.

Draw the de Bruijn graph of order 3 .
(b) (2 points) A de Bruijn sequence can be obtained from a de Bruijn graph by following a Hamiltonian cycle that starts and ends in the vertex $0 \cdots 0$. A Hamiltonian cycle is a cycle that visits each vertex exactly once before returning to the starting vertex. For instance, the only Hamiltonian cycle in the graph in the figure above is $00 \rightarrow 01 \rightarrow$ $11 \rightarrow 10 \rightarrow 00$. This cycle corresponds to the aforementioned de Bruijn sequence 0011. One can in fact prove that such a Hamiltonian cycle exists in every de Bruijn graph.
Read off two different de Bruijn sequences of order 3 by following two different Hamiltonian paths in your de Bruijn graph of order 3 starting in vertex 000.
(c) (2 points) Choose a de Bruijn sequence s(3) of order 3 from (b) and complete the following table:

bit-string	7 - index in $s(3)$
000	0
001	
010	
011	
100	
101	
110	
111	

(d) (2 points) Let $s(3)$ be the de Bruijn sequence from (c) and $0 \leq j<8$. What is the
value assigned by the table in (c) of the bit string

$$
((s(3) \ll j) \gg 5) \& 0 \mathrm{x} 7
$$

Here, \ll and \gg mean shift-left and shift-right, respectively, and \& is binary AND.
(e) (2 points) Given an unsigned integer $k>0$, what is the value of $k \&(-k)$, where $-k$ is the two's complement of k ?
(f) (3 points) Complete the following code skeleton such that it computes $\ell(x)$:
const int index[8] = \{ $0, \ldots\} ; / /$ the right-hand side of the table // in (c) here
const int s3 = Ob...; // your de Bruijn sequence used in (c)
unsigned int 1 (unsigned int x) \{ // we assume $0<x<256$
return index[...]; // complete code in the brackets \}

1.1 Extra:

For the following exercise denote by $G_{n}=\left(V_{n}, E_{n}\right)$ the De Bruijn graph of size n, and $b_{n}: V_{n} \rightarrow B_{n}\left(B_{n^{-}}\right.$bit-string of length $\left.n\right)$. The following shows that De Bruijn graphs have a Hamiltonian cycle:

1. For all $n \geq 1$, the graph G_{n} has a Eulerian cycle (goes through every edge exactly once).
2. For all graphs $G=(V, E)$, denote by $A(G)=\left(V^{a}, E^{a}\right)$ their line graph. Where $V^{a}=E$ and $(u v, w x) \in E^{a}$ iff $v=w$. Show that $G_{n+1} \cong A\left(G_{n}\right)$ for all $n \geq 1$.
3. Show that any Eulerian cycle in a graph G corresponds to a Hamiltonian cycle of $A(G)$.
