
Architecture et Système 2018-2019
Département Informatique, ENS Paris Saclay

TP 01 : The command line in Linux

Introduction: This is the first of a two-part introduction to the GNU/Linux operating system installed on
the machines of the Computer Science department. It gives you some basic knowledge that you will use
throughout your courses. All notions discussed here will be considered as acquired and mastered for all
future courses regardless of the module.
This first TP invites you to (re)discover the command line (shell).
Connecting to your session gives you access to your work environment. You will need to open a shell
(Terminal) to enter the instructions of this TP.

1 First steps

1.1 File System

In Linux everything is a file, where directories are files that contain names of other files. In order to
manage these files in an orderly fashion, we like to imagine them as an ordered tree. Each vertex is a file
and folders(which are also files) are vertices that can have other children. The root of the file system is the
"root" folder, denoted by "/". Under it you will find all the rest of the files. Let’s go over few of the important(for
this TP) sub-directories of the root :

— /home : Where you will find your users’ personal directories.
— /home/"username" : Your private folder. In most shells(explained soon) the character "~" is inter-

preted as the path to your privet directory.
— /bin : Here you will find most of the commands(applications) that we’ll use during this TP.

1.2 Shell and Terminal

A Terminal is a type of "text input/output environment", which means it can read your textual input and
output some text on the screen. In it we’ll input our commands to the computer, and get results. To open
the terminal on you computer(one of the ways), you press "Ctrl+Alt+T".
The terminal doesn’t perform your commands, but sends them to a Shell. The shell is a "command line
interpreter", meaning it receives your textual commands and tries to interpret and preform your commands.

1

You can think of it as the steering wheel of you computer. There are multiple types of shells(Sh,Zsh,Ksh. . .),
we are going to use Bash.

A few tricks that can be useful while using the shell :
— Tab : While writing you command you can click the Tab button, and the shell will try to auto-complete

your command. If it has a multiple options for completion it will do nothing. But, clicking it twice will
print out all of the options it found.

— Ctrl+C & Ctrl+V : You’ll find out that these two shortcuts don’t work ’normally’. This is partially
since "Ctrl+C" is designated for stop running process. Instead you can use "Ctrl+Shift+C" and
"Ctrl+Shift+V".

— Special folder shortcuts : As described earlier, "~" is understood as the address of your home
directory. Other shortcuts are "." (current folder), ".." (previous folder).

2 Command line : first steps

Since the shell is a command line interpreter, to make the shell do something you’ll need to write a
command and send it to the interpreter by pressing "Enter". For example enter the command "ls", what do
you think it does?

Some commands have "flags" or "option argument strings" usually beginning with “-”. The flags modify
the behavior of the program being invoked. For example enter the command "ls" with the flag "-l", what
changed?

2.1 Finding help

One of the ways of getting help with the commands on Linux, is to RTFM(read the fine manual). The
manual can be accessed from the shell via the man command(short for manual).

2.1.1 Man pages

Run the command : man man what do you see?
To search for text, press the key "/" followed by your search query, use the keys n and p to navigate between
different occurrences. What does the flag "-V" do?
To quit the man page press "q."

2.1.2 Using the man pages

All pages in man are organized in the same way.

1. NAME : name of the command ;

2. SYNOPSIS : short summary of the syntax of the command ;

3. DESCRIPTION : long or short description of the command ;

4. OPTIONS(optional) : description of supported options ;

5. There is of course the possibility to put as many subsections as you want ;

6. AUTHOR : the people who developed the command ;

7. SEE ALSO : Cross references.

2.1.3 Manual of the command ls

Read the help page for the command "ls" and try to find information that answers the following ques-
tions :

1. In no more than 10 words, what is the purpose of this command?

2

2. Which will print all the files (even those hidden : in Linux hidden files are those whose name starts
with a point) ?

3. Which option will print the files with a long listing format?

4. Which option will print the size of the files in a human readable way?

5. Which option will print the subdirectories of the given directory recursively?

2.1.4 Other ways of getting help

There are other option to find help :

1. Adding the option - -help at the end of a command, gives you a short explanation about this com-
mand, e.g. mkdir - -help.

2. The command "whatis" displays a one-line description of the command following it, e.g. whatis ls.

3. Using your favorite search engine on the internet, e.g. www.duckduckgo.com, www.bing.com(really?),
www.google.com,. . .

4. Asking a fellow human.

2.1.5 The command cd

— Find out what this command is for.
— Go to the tmp directory at the root of the system and list its contents
— Return to your home directory
— What does cd - do?

2.1.6 Wildcards

A wildcard is a symbol that takes the place of an unknown character or set of characters. Some of the
heavily used wildcards are :

— The asterisk "*", represents any number of unknown characters. For example "*cake" can stand for
"carrotcake, chocolatcake,cake,..." and "cake*" can stand for "cakeParty, cakeWorld,cake,...".

— The question mark "?", represents only one character. For example "??ke" can stand for "cake,bake,take,. . ."
and "ke??" can stand for "keen,kept,keep,. . .".

Use the "wildcard" "*" to list all the files starting ending with ".dat" in "/lib/firmware"

2.1.7 Manuel of the command mkdir

Consider that we want to create at the root of your account the following path :

1 Arch iSy s / tp /01

Launch the following command and observe what is happening :

1 cd ; mkdir A r ch iSy s / tp /01

Look in the "mkdir" man page for the option to create the entire directory hierarchy in one command.

3

2.2 The command echo

What is the command "echo" used for?
What does the following command do? Why?

1 echo −ne "\n\n ∗\ tH e l l o World $LOGNAME\ t \ t ∗\n\n"

Try the following commands, what is the difference? Why?

1 echo −e ’\ n\n ∗\ tH e l l o World $LOGNAME\ t \ t ∗\n\n ’

2.3 Other commands

In the following, we will use the command "ps" which lists the programs running on the machine and
"cat" which reads an input and prints it on the standard output. See the manual pages for these commands
if they are not familiar to you.

3 Redirections

The commands that we have seen so far send their outputs to the so-called standard output (stdout).
By default, that is the terminal. However, it is possible to change the destination of the standard output for
a command and for example print the result of a command into a file (this practice is called redirection).
Note that programs may also produce output in places other than standard output.

In general, most programs work as follows :
— if one or more files are specified, the program works on these files ;
— if no file is specified, standard input is used.

3.1 First steps in redirection

Execute each of the following commands(in order) in your terminal, examine the results and deduce
what happens (it will be necessary to look at the contents of the files generated after each command) :

1 l s
l s > f i l e 1

3 pwd > f i l e 1
ps aux > f i l e 2 . t x t

5 cd > f i l e 3
ca t f i l e 1 f i l e 2 . t x t > f i l e 4

7 ca t f i l e 1 >> f i l e 1
pwd >> f i l e 1

9 ca t f i l e 1 > /dev/ n u l l

What are the key words «>» and «>>» used in the previous examples?

3.2 The pipe

The pipe is also a form of redirection, but this time instead of redirecting the standard output to a file
as before, we will redirect it to a command. Note that, just like for standard output, any program has a
"standard input", "stdin", which may or may not be used. In the terminal, the standard input is often the
keyboard.

4

3.2.1 Cat

Run the cat command in a terminal. Write a few words on the screen then press "Enter". The line is
duplicated. Why? (to finish press Ctrl + D)

3.2.2 Examples of pipe

Execute each of the following commands(in order) on your device, examine the contents of the mani-
pulated files and deduce what is happening :

1 l s −R > f i l e 1
l e s s f i l e 1

3 ca t f i l e 1
ca t f i l e 1 | l e s s

5 ps aux
ps aux | g rep −v r oo t

7 ps aux | g rep r oo t
ps aux > f i l e 2

9 ca t f i l e 2 | g rep −v r oo t

Additional questions : What is the purpose of grep? And its ’-v’ option?
List the processes that do not belong to "root" but contain the root in their names and write them to a file
with the name ’processwithroot’ .

3.3 Input redirection

Just as it is possible to redirect the output of a command, it is sometimes interesting to redirect its input.
Explain the behavior of the following command :

1 ca t <<eob
a

3 b
c

5 eob

What is the difference between <, << and <<<?
Note : Pressing "Ctrl+D" tells the shell that it reached the end of the text.

4 Process Management

We call "process management" the manipulation of programs running from the terminal. There are also
graphical interfaces, such as in Windows or in Mac OS, that can do what we will do in this section.

A running program is called a process. Processes are identified on the system by a number called
"PID" (process identifier).

Under Unix on the command line, a process can be executed in two different ways :
— In the background : While the process is running in the background, you can launch other processes

in the shell. The background process can print output to the terminal, but cannot receive input from
the keyboard.

— Foreground : This is the normal mode of operation. The foreground process receives input from the
keyboard, and the shell waits until the process has finished before letting you start other command.

5

We will see that it is possible to switch a process from one state to another in the terminal, and to kill
processes. We will also see that it is possible to list running processes in a terminal thanks to the "jobs"
command.

4.1 Process in the background

Putting an "ampersand"(&) at the end of a command makes a process launch in the background. Run
the following code :

1 xterm &
emacs mon f i c h i e r &

In this case, the Shell executes the xterm command and returns to the user the control after displaying
the PID numbered by the shell, then it runs emacs in the same way.

Example of a possible output, after running xterm& :

[1] 1360

and after running emacs& :

1 [2] 1366

In this case, the xterm PID is "1360", and its job number is 1 in the shell, while emacs (PID 1366) is
numbered "2" in this shell.

4.2 Switching from one state to another

When a process is started in "foreground", you cannot interact with the shell that started it. To "get your
control back" you have to switch the process to the "background". The combination of keys "CTRL + Z"
suspends a foreground process and hands control to the shell. Then the "bg" command (for "background")
resumes the process, but in the background.

Note : You’ll find that the "Control" key has different notations. Two of the those are «CTRL» and «ˆ».
Conversely, the last process put in the background (for example with ending the command by "&"), can

be switched to the foreground with the command "fg".
Preform and answer the following questions :

— In a terminal launch a new terminal "xterm" ;
— run the command ls in the new terminal ;
— put the new terminal to sleep ;
— to run the ls command in the new terminal, what’s going on? Why?
— switch the terminal in the background
— relaunch "ls" what’s going on? Why?

4.2.1 Application and process states

Create a new file with the name "script1" and the following code in it (use cat and a redirection) :

1 wh i l e t r u e ; do
f o r i i n { 1 . . 5 } ; do

3 echo b l a
s l e e p 1

5 done

6

echo −n ">> "
7 r ead a

echo $a
9 done

Run the following command "bash script1", when the line in terminal displays « >> » enter a character
and confirm with "Enter".

After several executions, put the script to sleep. What is happening?
Wake up the process in the foreground, what’s going on?
Toggle the process in the background. What happens if you type "ls" when ">>" is displayed?
Re-take control of the script process and stop it.

4.3 Kill a process in foreground

To kill a process running in the foreground, enter the sequence "CTRL + C" in the terminal running the
process.

4.4 Jobs

Using bash’s help page in the "JOB CONTROL" section, run the following commands and keyboard
sequences and analyze the behavior of the processes (you will of course need two terminals, one for the
manpage, the other for exercise).
Note : Remember to reposition yourself in the terminal after launching applications.

1 emacs &
xterm &

3 f i r e f o x &
emacs

5 C t r l + C
j o b s

7 f g %3
C t r l + Z

9 bg
fg %2

11 C t r l + C
k i l l %1

13 j o b s

What process remains after the execution of these commands?

4.5 Chaining processes

When a program finishes executing, it returns a value related to how the process stopped. This va-
lue is usually interpreted as an indication of whether the command succeeded. It can be used to chain
commands. To this end we will use the operators "&&" for "AND" and "||" for "OR".
"&&" will run the command on its right side only if the left side “succeeded”’ and "||" will run the command
on its right side only if the left side “failed”. For example command

1 mkdir f o l d e r / a n o t h e r f o l d e r 2> /dev/ n u l l | | echo r i g h t s i d e e v a l u a t e d

7

will print "right side evaluated", while the following command :

1 mkdir f o l d e r / a n o t h e r f o l d e r 2> /dev/ n u l l && echo r i g h t s i d e e v a l u a t e d

will not print anything.

4.5.1 First process chain

With the "grep" command, test the existence of the "root" account on your system and display the
message : "root exists" if the account is found.

Note : The file "/etc/passwd" contains the list of existing accounts on the system.

4.5.2 More advanced chain

Using the operators and what has been seen previously, write a command displaying ONLY the text
"Firefox is running" on the standard output if the firefox program is running on your machine and "No firefox
currently" otherwise.

5 The GNU/Linux operating system

5.1 Overview

— The root of the Linux operating system is marked "/".
— On Linux everything is file.
— A user is a person or program registered on the system (with an account).
— Groups are used to classify users based on criteria defined by the system administrator.
— Users can belong to one or more groups.
— Users have privileges based on their membership groups.
— For the system, a user is a number called "UID" (User identifier) associated with a "login".
— For the system, a group is also a number.
— The user has a primary or default group whose number is "GID" (Group Identifier).
— The rights, or permissions, that can be assigned to a file are : no rights noted "-", "read" denoted by

"r", "writing" denoted by "w" and execution rights or right to traverse the folder "x".
— Rights can be granted to users, groups or others (people not belonging to the two previous sets).
— Rights are displayed as triplets "rwx" for each set to which they can be granted (in the end we get

permissions from « −−−−−−−−− », no rights, and « rwxrwxrwx » everyone can read write and
access the file).

— The "-l" option of "ls" shows the rights of to the files.
— The "chmod" (change mode) command allows you to modify the file rights.
— The "chown" (change owner) command is used to modify the owner and/or group owning a file.
— On a corporate system, a single user can not elevate his privileges without authorization.
— The home directory of a user is noted "~login". If "login" is omitted, the current user is implied.
— "groups" allows to list the membership groups of a user and "id" specifies their number.
— "pwd" Locates you on the system (displays the current directory you are in).

5.2 Questions

— What are the rights on your homedir ?
— Which group does your homedir belong to?
— Which group do you belong to? and your neighbor?
— Go to "/root". What is going on? Why?

8

— What is your gid?
— "chmod" has two ways to represent these permissions with an octal number and with symbols.

Give two commands, one with the octal notation, the other with alphabetical notation, to define the
following rights on the directory "mydir" (starting rights "rwxr-xr-x") :
— rwx−−−−−−
— rwxr-x−−−

— Change the owner of the tmp directory. What is going on? Explain.

6 The variables

On Unix, the system is able to exchange or retrieve information by using variables. These variables are
made accessible by the Shell. Some are operating system variables (environment variables), others are
shell-specific. We will study some of them, how to modify them, create them and display them.

6.1 Declaration

The following is a template for declaring a variable :

1 name_of_var=va l u e

Where "value" is a string, and "name_of_var" is a string consisting of basic ASCII characters and not
starting with numbers. For example :

1 name="Jean"

6.2 Viewing

Bash (which is a type of shell) has the command "echo". This command allows you to display the value
associated with the name of a variable. Variables must be prefixed by the character "$". The following
command will display the value associated with the variable named "name" :

1 echo $name

Although this syntax works, the recommended syntax by bash is :

1 echo ${name}

6.3 Modification

To changing a variable one needs to overwrite its previous declaration.

6.4 Exercices

1. View the contents of the HOME variable. What do you think this variable represents?

2. View the contents of the PWD variable. What do you think this variable represents?

3. View the contents of the PATH variable. What do you think this variable represents?

9

4. View the contents of the PS1 variable. What do you think this variable represents? Look in the help
page of bash. Try changing it to something else (for example "Linux is not scary :"). Re-launch a
new terminal. What do you notice?

5. Modify the contents of the PATH variable, then try to run a command. What is going on?

6.5 String of characters

In the shell you can find strings between double quotes ("foo"), single quote (’foo’) or anti-quote (‘foo‘).
Test the following commands, and explain what happens :

1 echo $HOME
echo "$HOME"

3 echo ’$HOME’
echo ‘$HOME‘

5 TEST=l s ; echo " ‘$TEST‘"
t e s t=$ (l s) ; echo $ t e s t

7 Some practical shortcuts

If you use the text editor emacs, You will have the chance to reuse some keyboard shortcuts when
entering a command 1.

— What does Ctrl+R do?
— What does Ctrl+A do?
— What does Ctrl+E do?
— How do you copy/paste text to or from your device?

8 Test your knowledge

To go further with the command line, I recommend you go to the following URL : http://overthewire.
org/wargames/bandit/. Your goal is to go to level 34 ! You have to pass the level n to unlock the level n+1.
Good luck !

9 Bonus questions

— What does the command which do?
— What is the difference between > and 2> ?
— How to mix these two redirects?
— What does the command pkill do?
— What does the commands less and more? do?
— What does the command yes do? What do you think it can be used for?
— Search the internet for an answer that explains why the names of hidden files start with a dot.

1. If you are a user of vi you have to change the editing mode : https://sanctum.geek.nz/arabesque/vi-mode-in-bash/

10

http://overthewire.org/wargames/bandit/
http://overthewire.org/wargames/bandit/
https://sanctum.geek.nz/arabesque/vi-mode-in-bash/

	First steps
	File System
	Shell and Terminal

	Command line: first steps
	Finding help
	Man pages
	Using the man pages
	Manual of the command ls
	Other ways of getting help
	The command cd
	Wildcards
	Manuel of the command mkdir

	The command echo
	Other commands

	Redirections
	First steps in redirection
	The pipe
	Cat
	Examples of pipe

	Input redirection

	Process Management
	Process in the background
	Switching from one state to another
	Application and process states

	Kill a process in foreground
	Jobs
	Chaining processes
	First process chain
	More advanced chain

	The GNU/Linux operating system
	Overview
	Questions

	The variables
	Declaration
	Viewing
	Modification
	Exercices
	String of characters

	Some practical shortcuts
	Test your knowledge
	Bonus questions

