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Abstract

We propose a model for XML update primitives of the W3C XQuery Update
Facility as parametrized rewriting rules of the form: ”insert an unranked tree
from a regular tree language L as the first child of a node labeled by a”. For
these rules, we give type inference algorithms, considering types defined by
several classes of unranked tree automata. These type inference algorithms are
directly applicable to XML static typechecking, which is the problem of verifying
whether, a given document transformation always converts source documents
of a given input type into documents of a given output type. We show that
typechecking for arbitrary sequences of XML update primitives can be done in
polynomial time when the unranked tree automaton defining the output type is
deterministic and complete, and that it is EXPTIME-complete otherwise.
We then apply the results to the verification of access control policies for XML
updates. We propose in particular a polynomial time algorithm for the problem
of local consistency of a policy, that is, for deciding the non-existence of a
sequence of authorized update operations starting from a given document that
simulates a forbidden update operation.

Keywords: Program Verification, Static Typechecking, Web Security, XML
Updates, XML Access Control Policies, Hedge Automata.

1. Introduction

XQuery language has been extended to XQuery Update Facility [8] in or-
der to provide convenient means of modifying XML documents or data. The
language is a candidate recommendation from W3C and adds imperative oper-
ations that permit one e.g. to update some parts of a document while leaving
the rest unchanged. This includes rename, insert, replace and delete primi-
tive operations at the node level. Compared to other transformation languages
(such a XSLT), XQuery Update Facility is considered to offer concise, readable
solutions.
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A central problem in XML document processing is static typechecking. This
problem amounts to verifying at compile time that every output XML docu-
ment which is the result of a specified query or transformation applied to an
input document with a valid input type has a valid output type. However for
transformation languages such as the one provided by XQuery Update Facility,
the output type of (iterated) applications of update primitives are not easy to
predict. Another important issue for XML data processing is the specification
and enforcement of access policies. A large amount of work has been devoted
to secure XML querying. But most of the work focus on read-only rights, and
very few have considered update rights for a model based on XQuery Update
Facility operations [e.g. 6, 17].

In the domain of formal verification of infinite state systems and programs,
several approaches such as regular model checking rely on algorithms computing
the rewrite closure of tree automata languages, see e.g. [5, 16]. It seems natural
to consider such tree automata techniques for verification problems related to
the typing of XML documents and XML transformations, in particular XML
updates [8]. Indeed, XML documents are commonly represented as finite labeled
unranked trees, and most of the typing formalisms currently used for XML are
based on finite tree automata [30, 36].

A standard approach to XML typechecking is forward (resp. backward) type
inference, that is, the computation of an output (resp. input) XML type (as a
tree automaton) given an input (resp. output) type and a tree transformation.
Then the typechecking itself can be reduced to the verification of set operations
on the computed input or output type, see [28] for an example of backward type
inference procedure.

In this paper, we consider the problem of typechecking arbitrary sequences
of operations taken in a given set of atomic update primitives. We propose a
modeling of (possibly infinite) sets of primitive update operations of the W3C
XQuery Update Facility proposal [8] in terms of rewrite rules with parameters.
The update operations include renaming, insertion, deletion and replacement
in XML documents, and some extensions, like the deletion of one single node
(preserving its descendant) instead of the deletion of a whole subtree. For sev-
eral subclasses of these operations, we derive algorithms of synthesis of unranked
tree automata, yielding both forward and backward type inference results. Since
update operations, beside relabeling document nodes, can create and delete en-
tire XML fragments, modifying a document’s structure, it is not obvious how
to infer the type of updated documents. Former tree automata completion con-
structions like [16] work for automata computing on ranked trees. Here, we
consider unranked ordered trees, and our constructions are non trivial adapta-
tions of former tree automata completion procedures, where, starting from an
initial automaton, new transitions rules are added and existing transition rules
are recursively modified. Moreover, we show that some update operations do
not preserve regular tree languages (i.e. languages of hedge automata) and that
for the type inference for these operations, we need to consider a larger and
less mainstream class of decidable unranked tree recognizers called context-free
hedge automata.

One of our motivations for this study is the static analysis of access control
policies (ACP) for XML updates. We consider two approaches for this prob-
lem. The first approach addresses rule-based specifications of ACPs, where the
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operations allowed, resp. forbidden, to a user are specified as two sets of atomic
update primitives [6, 17]. We show in particular how to apply our type inference
results to the verification of local consistency of ACPs, i.e. whether no sequence
of allowed updates starting from a given document can achieve an explicitly
forbidden update. Such situations may lead to serious security breaches which
are challenging to detect according to [17]. In the second approach (DTD-based
XML ACPs) the ACP is defined by adding security annotations to a DTD D, as
in [15, 17]. In this case, it is required to check the validity of the document wrt
D before applying every update operation. We show that under this restriction
typechecking becomes undecidable.

Related work: Many works have employed tree automata to compute sets
of descendants for standard (ranked) term rewriting (see e.g. [16]). Regular
model checking [4] is extended to hedge rewriting and hedge automata in [39],
which gives a procedure to compute reachability sets approximations. Here we
compute exact reachability sets for some classes of hedge rewrite systems. For
some results we need context-free hedge automata, a more general class than
the regular hedge automata of [39].

When considering real programming languages like XDuce or CDuce [3] for
writing transformations, typechecking is generally undecidable and approxima-
tions must be applied. In order to obtain exact algorithms, several approaches
define conveniently abstract formalisms for representing transformations. Let
us cite for instance TL (the transformation language) [25] and macro tree trans-
ducers (MTT) [26, 34], and k-pebble tree transducers (k-PTT) [28], a powerful
model defined so as to cover relevant fragments of XSLT [22] and other XML
transformation languages. Some restrictions on schema languages and on top
down tree transducers (on which transformations are based) have also been
studied [13, 27] in order to obtain PTIME typechecking procedures.

In this paper, we consider unrestricted applications of updates, unlike e.g.
top-down transductions in [27]. It is shown in [28] that the set of output trees of
a k-PTT for a fixed input tree is a regular tree language. In contrast, we shall
see (Examples 8,9 below) that it is not the case for the iteration of some update
operations, and therefore that such transformation are not expressible as k-
PTT. In Theorem 2, we show that the output language of the iteration of these
updates for a regular input language is recognizable by a context-free hedge
automata. This can be related to the result of [14], used in [26] in the context
of typechecking XML transformations, and stating that the output language
of a linear stay MTT can be characterized by a context-free tree grammar (in
the case of ranked trees). Theorem 2 implies that the output languages of
the iteration of updates can be described by MTTs, as MTT can generate all
context-free tree languages. On the other hand, each of the primitive update
operations can be solely modeled by a MTT. It is however not clear whether the
finite (but unbounded) iterations of updates operations can be easily expressed
as a MTT relation.

In [2] the authors investigate the problem of synthesizing an output schema
describing the result of an update applied to a given input schema. They show
how to infer safe over-approximations for the results of both queries and updates
(see the beginning of Section 3 and Section 4.4).

Recent works have also applied local Hoare reasoning to simple tree update
and even to a significant subset of the XML update library in W3C Document
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Object Model [18]. As far as we know this approach is not automated.
The first access control model for XML was proposed by [10] and was ex-

tended to secure updates in [7]. Static analysis has been applied to XML Access
Control in [32] to determine if a query expression is guaranteed not to access
to elements that are forbidden by the policy. In [17] the authors propose the
XACU language. They study policy consistency and show that it is undecid-
able in their setting. On the positive side [6] considers policies defined in term
of annotated non recursive XML DTDs and gives a polynomial algorithm for
checking consistency.

Organization of the paper: we introduce the needed formal background
about terms, hedge automata and rewriting systems in Section 2. Then we
propose a model of XML update primitives as parametrized rewriting rules in
Section 3. In Section 4 we present type synthesis algorithms for the iteration
of such rules. Finally we give applications to the verification of Access Control
Policies for updates in Section 5.

2. Definitions

2.1. Unranked Ordered Trees

2.1.1. Terms and Hedges.

We consider a finite alphabet Σ and an infinite set of variables X . The
symbols of Σ are generally denoted a, b, c . . . and the variables x, y. . .We define
recursively a hedge over Σ and X as a finite (possibly empty) sequence of terms
and a term as either a single node n labeled by a variable of x ∈ X or the
application of a node n labeled by a symbol a ∈ Σ to a hedge h. The term
is denoted x in the first case and a(h) in the second case, and n is called the
root of the term in both cases. The empty sequence is denoted () and when h
is empty, the term a(h) will be simply denoted by a. The root node of a(h)
is called the parent of every root of h and every root of h is called a child of
the root of a(h). A root of a hedge (t1 . . . tn) is a root node of one of t1, ..., tn.
A leaf of a hedge (t1 . . . tn) is a leaf (node without child) of one of the terms
t1, ..., tn. A path is a sequence of nodes n0, . . . , np such that for all i < p, ni+1

is a child of ni. In this case, np is called a descendant of n0. As usual, we can
see a hedge h ∈ H(Σ,X ) as a function from its set of nodes dom(h) into labels
in Σ ∪ X . The label of the node n ∈ dom(h) is denoted by h(n).

The set of hedges and terms over Σ and X are respectively denoted H(Σ,X )
and T (Σ,X ). We will sometimes consider a term as a hedge of length one, i.e.
consider that T (Σ,X ) ⊂ H(Σ,X ). The sets of ground terms (terms without
variables) and ground hedges are respectively denoted T (Σ) and H(Σ). The
set of variables occurring in a hedge h ∈ H(Σ,X ) is denoted var (h). A hedge
h ∈ H(Σ,X ) is called linear if every variable of X occurs at most once in h.

2.1.2. Substitutions.

A substitution σ is a mapping of finite domain from X into H(Σ,X ). The
application of a substitution σ to terms and hedges (written with postfix no-
tation) is defined recursively by xσ := σ(x) when x ∈ dom(σ), yσ := y when
y ∈ X \ dom(σ), (t1 . . . tn)σ := (t1σ . . . tnσ) for n ≥ 0, and a(h)σ := a(hσ).
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2.1.3. Contexts.

A context is a hedge u ∈ H(Σ,X ) with a distinguished variable xu linear
(with exactly one occurrence) in u. The application of a context u to a hedge
h ∈ H(Σ,X ) is defined by u[h] := u{xu 7→ h}. It consists in inserting h into
a hedge in u in place of the node labelled by xu. Sometimes, we write t[s] in
order to emphasize that s is a subterm (or subhedge) of t.

2.2. Finite Automata and Grammars

In the following proofs, we describe finite automata for the horizontal lan-
guages of HA transitions as tuples B = (Q,S, i, F,Γ), where Q is a finite input
alphabet, S is a finite set of states, i is the initial state, F ⊆ S is the set of final
states and Γ ⊆ S× (Q∪ {ε})×S is the set of transitions and ε-transitions. Ev-
ery transition (s, q, s′) will be denoted s −→

q
s′. For s, s′ ∈ S, we write s −−→

ε

B
s′

to express that s′ can be reached from s by a (possibly empty) sequence of
ε-transitions of B, and s −−−−−→

q1...qn s′, for q1, . . . , qn ∈ Q, if there exists 2(n+ 1)

states s0, s
′
0, . . . , sn, s

′
n ∈ S with s0 = s, sn −−→

ε

B
s′ and 0 ≤ i < n, si −−→

ε

B
s′i and

(s′i, qi+1, si+1) ∈ Γ.
We describe below CF grammars as tuples G = (Q,N , I,Γ), where Q is

a finite input alphabet, (set of terminal symbols), N is a set of non terminal
symbols, I ∈ N is the initial non terminal, and Γ ⊆ N × (N ∪ Q)∗ is a set of
production rules of the form N := w (with N ∈ N and w ∈ (N ∪Q)∗).

2.3. Hedge Automata and Context-Free Hedge Automata

We consider two kind of types for XML documents, defined as two classes of
automata for unranked trees. The first one is the class of hedge automata [30],
denoted HA. It captures the expressive strength of almost all popular type
formalisms for XML [31]. The second and perhaps lesser known class is the
context-free hedge automata, denoted CF-HA and introduced in [33]. CF-HA
are strictly more expressive than HA and we shall see that they are of interest
for typing certain update operations.

A hedge automaton (resp. context-free hedge automaton) is a tuple A =
(Σ, Q,Qf ,∆) where Σ is a finite unranked alphabet, Q is a finite set of states
disjoint from Σ, Qf ⊆ Q is a set of final states, and ∆ is a set of transitions of
the form a(L) → q where a ∈ Σ, q ∈ Q and L ⊆ Q∗ is a regular word language
(resp. a context-free word language).

When Σ is clear from the context it is omitted in the tuple specifying A. We
define the move relation between ground hedges h, h′ ∈ H(Σ ∪ Q) as follows:
h −−→

A
h′ iff there exists a context u ∈ H(Σ, {xC}) and a transition a(L) → q ∈ ∆

such that h = u[a(q1 . . . qn)], with q1 . . . qn ∈ L and h′ = u[q]. The relation −−→
∗

A
is the transitive closure of −−→

A
.

The language of a HA or CF-HA A in one of its states q, denoted by L(A, q)
and also called the set of hedges of type q, is the set of ground hedges h ∈ H(Σ)
such that h −−→

∗

A
q. We say sometimes that a hedge of L(A, q) has type q (when

A is clear from context). A hedge is accepted by A if there exists q ∈ Qf such
that h ∈ L(A, q). The language of A, denoted by L(A) is the set of hedges
accepted by A.
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2.3.1. Collapsing Transitions, δ- and ε-Transitions

We consider the extension of HA and CF-HA with so called collapsing tran-
sitions which are special transitions of the form L → q where L ⊆ Q∗ is a
context-free language and q is a state. The move relation for the extended set
of transitions generalizes the above definition with the case u[q1 . . . qn] −−→A u[q]
if there exists a collapsing transition L → q of A and q1 . . . qn ∈ L. The defini-
tion of the languages of HA and CF-HA is extended to automata with collapsing
transitions accordingly.

Note that we do not exclude the case n = 0 in the above definition, i.e. L
may contain the empty word in L → q. A collapsing transition where L contains
only the empty word (L = {()}) is called a δ-transition. A collapsing transitions
with a singleton language L containing a length one word (i.e. transitions of
the form {q′} → q, where q′ and q are states) correspond to ε-transitions for
tree automata, and we use the same name here. We shall use below the simpler
notations () −→δ q and q′ −→ε q for respectively δ- and ε-transitions.

Without collapsing transitions, all the hedges of L(A, q) are terms. Indeed,
by applying standard transitions of the form a(L) → a, one can only reduce
length-one hedges into states. But collapsing transitions permit to reduce a
ground hedge of length more than one into a single state.

The ε-transitions do not increase the expressiveness HA or CF-HA (see [9]
for HA and the proof for CF-HA is similar). One can also observe that it is also
the case of δ-transitions.

Lemma 1. Every HA (resp. CF-HA) A extended with ε- and δ-transitions
can be transformed in polynomial time into a HA (resp. CF-HA) A′ without
collapsing transitions such that L(A′) = L(A).

Proof. Let A = (Σ, Q,Qf ,∆), where ∆ contains both standard HA transitions

of the form a(L) → q and ε- and δ-transitions. Let Q0 = {q ∈ Q | () −→
δ

q ∈ ∆}

and for all q ∈ Q, let q−1 = {q′ ∈ Q | q′ −−→
∗

∆ε
q ∈ ∆}, where −−→

∗

∆ε
denotes

the reflexive and transitive closure of the relation {(q′, q) ∈ Q2 | q′ −→
ε

q ∈ ∆}.
Given L ⊆ Q∗, we construct L′ by substitution of every state symbol q by the
regular language Q∗

0 q
−1Q∗

0. Note that if L is regular (resp. CF) then L′ is
regular (resp. CF).
Then we let ∆′ = {a(L′) → q | a(L) → q ∈ ∆}, and A′ = (Σ, Q,Qf ,∆). 2

However, general collapsing transitions strictly extend HA in expressiveness,
and even collapsing transitions of the form L → q where L is finite (hence
regular).

Example 1. The extended HA A =
(

{q, qa, qb, qf}, {g, a, b}, {qf}, {a → qa, b →

qb, g(q) → qf , qa q qb → q}
)

recognizes {g(anbn) | n ≥ 1} which is not a HA
language. 3

We recall the following lemma, proved in [21], that shows that collapsing
transitions can be eliminated from CF-HA, when restricting to the recognition
of terms.

Lemma 2. Every CF-HA A extended with collapsing transitions can be trans-
formed in polynomial time into a CF-HA A′ without collapsing transitions such
that L(A′) = L(A) ∩ T (Σ).

6



2.3.2. Properties.

It is known that for both classes of HA and CF-HA, the membership and
emptiness problems are decidable in PTIME [9, 30, 33].

We call a HA or CF-HA A = (Σ, Q,Qf ,∆) normalized if for every a ∈ Σ
and every q ∈ Q, there is exactly one transition rule a(La,q) → q in ∆ (note
that the language La,q might be empty).

Lemma 3. Every HA (resp. CF-HA) A can be transformed in polynomial time
into a normalized HA (resp. CF-HA) A′ such that L(A′) = L(A).

Proof. The transformation works by replacing iteratively every two rules a(L1) →
q and a(L2) → q by a(L1 ∪ L2) → q. 2

A CF-HA A = (Q,Qf ,∆) is called deterministic iff for all two transitions
rules a(L1) → q1 and a(L2) → q2 in ∆, either L1 ∩ L2 = ∅ or q1 = q2. It is
called complete if for all a ∈ Σ and and w ∈ Q∗, there exists at least one rule
a(L) → q ∈ ∆ such that w ∈ L. When A is deterministic (resp. complete), for
all t ∈ T (Σ), there exists at most (resp. at least) one state q ∈ Q such that
t ∈ L(A, q). Every HA can transformed into a deterministic and complete HA
recognizing the same language (see e.g. [9]). CF-HA can be completed but not
determinized.

Finally, HA languages are closed under Boolean operations, but CF-HA are
not closed under intersection and complementation. The intersection of a CF-
HA language and a HA language is a CF-HA language. All these results are
effective, with PTIME (resp. EXPTIME) constructions of automata of poly-
nomial (resp. exponential) sizes for the closures under union and intersection
(resp. complement).

2.4. Term Rewriting Systems

We use below term rewriting rules for modeling XML update operations. For
this purpose, we propose a non-standard definition of term rewriting, extending
the classical one [12] in two ways: the application of rewrite rules is extended
from ranked terms to unranked terms and second, the rules are parametrized
by HA languages (i.e. each parametrized rule can represent an infinite number
of unparametrized rules).

2.4.1. Unranked Term Rewriting Systems.

A term rewriting system R over a finite unranked alphabet Σ (TRS) is a set
of rewrite rules of the form ℓ → r where ℓ ∈ H(Σ,X ) \ X and r ∈ H(Σ,X ); ℓ
and r are respectively called left- and right-hand-side (lhs and rhs) of the rule.
Note that we do not assume the cardinality of R to be finite.

The rewrite relation −−→
R

of a TRS R is the smallest binary relation on
H(Σ,X ) containing R and closed by application of substitutions and contexts.
In other words, h −−→

R
h′, iff there exists a context u, a rule ℓ → r in R and a

substitution σ such that h = u[ℓσ] and h′ = u[rσ]. The reflexive and transitive
closure of −−→

R
is denoted −−→

∗

R
.

Example 2. With R = {g(x) → x}, we have g(h) −−→
R

h for all h ∈ H(Σ,X )
(the term is reduced to the hedge h of its arguments).

With R = {g(x) → g(axb)}, g(c) −−→
∗

R
g(ancbn) for every n ≥ 0. 3
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2.4.2. Parameterized Term Rewriting Systems.

LetA = (Σ, Q,Qf ,∆) be a HA. A term rewriting system over Σ parametrized
by A (PTRS) is given by a finite set, denoted R/A, of rewrite rules ℓ → r where
ℓ ∈ H(Σ,X ) and r ∈ H(Σ ⊎ Q,X ) and symbols of Q can only label leaves of r
(⊎ stands disjoint union, hence we implicitly assume that Σ and Q are disjoint
sets). In this notation, A may be omitted when it is clear from context or not
necessary. The rewrite relation −−−−→

R/A
associated to a PTRS R/A is defined

as the rewrite relation −−−−→
R[A]

where the TRS R[A] is the (possibly infinite) set

of all rewrite rules obtained from rules ℓ → r in R/A by replacing in r every
state p ∈ Q by a ground term of L(A, p). Note that when there are multiple
occurrences of a state p in a rule, each occurrence of p is independently replaced
with a term of type p, which can generally be different from one another.

Several examples of parametrized rewrite rules can be found in Figure 1
below. We will also consider in Section 5.2 an extension of PTRS called PTRS
with global constraints (PGTRS) .

2.4.3. Problems.

Given a set L ⊆ H(Σ,X ) and a PTRS R/A, we define post∗R/A(L) := {h′ ∈

H(Σ,X ) | ∃h ∈ L, h −−−−→
∗

R/A
h′} and pre∗R/A(L) := {h ∈ H(Σ,X ) | ∃h′ ∈

L, h −−−−→
∗

R/A
h′}.

Reachability is the problem to decide, given two hedges h, h′ ∈ H(Σ) and a
PTRS R/A whether h −−−−→

∗

R/A
h′. Reachability problems for ground ranked term

rewriting have been investigated in e.g. [19]. C. Löding [23] has obtained results
in a more general setting where rules of type L → R specify the replacement of
any element of a regular language L by any element of a regular tree language
R. Then [24] has extended some of these works to unranked tree rewriting for
the case of subtree and flat prefix rewriting which is a combination of standard
ground tree rewriting and prefix word rewriting on the ordered leaves of subtrees
of height 1.
Typechecking (see e.g. [28]) is the problem to decide, given two sets of terms τin
and τout called input and output types (generally presented as HA) and a PTRS
R/A whether post∗R/A(τin) ⊆ τout or equivalently τin∩pre∗R/A(τout) = ∅ (where

τout is the complement of τout). Note that reachability is a special case of
typechecking, when both τin and τout are singleton sets. Hence typechecking is
undecidable whenever reachability is. One related problem, called forward (resp.
backward) type inference, is, given a PTRS R/A and a HA or CF-HA language
L, to construct a HA or CF-HA recognizing post∗R/A(L) (resp. pre

∗
R/A(L)).

3. Primitive Update Facility Operations

We propose in this section a definition in term of PTRS rules of the update
primitive operations of the XQuery update facility [8] and some extensions.

XQuery Update Facility [8] is a extension of XQuery with some update
primitives, to be applied to a term in input, in order to rename nodes, replace
a subterm by a new one, insert a new subterm at some position or delete a
subterm. In the case of replacement or insertion, the new subterms in argument
(called content nodes in [8]) are specified by positions within the term in input
(using XPath expressions).
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a(x) → b(x) REN

a(x) → a(p x) INSfirst a(x) → p a(x) INSbefore
a(x) → a(x p) INSlast a(x) → a(x) p INSafter

a(xy) → a(x p y) INSinto
a(x) → p RPL1 a(x) → p1 . . . pn RPL

a(x) → () DEL a(x) → x DELs

Figure 1: Class UFO: PTRS Rules for the XQuery Update Facility Primitives and Extensions

Benedikt and Cheney have recently proposed [2] a formal model for XQuery
Update Facility, with languages for update primitives and XQuery Updates and
their operational semantics. In their abstract model, the subterms in argu-
ments are approximated by states of a tree automaton (type names of regular
expression types [20]).

We follow a similar approach here, representing update primitives by PTRS
rules. We assume given an unranked alphabet Σ and a HA A = (Σ, Q,Qf ,∆).
Figure 1 displays PTRS rules, parametrized by states p, p1,.., pn of A, rep-
resenting infinite sets of atomic operations of the XQuery update facility [8],
and some restrictions or extensions. We call UFO the class of PTRS rules in
Figure 1, and UFOreg the subclass of PTRS rules of type REN, INSfirst, INSlast,
INSinto, RPL1, or DEL.

REN renames a node: it changes its label from a into b. Such a rule leaves
the structure of the term unchanged. INSfirst inserts a term of type p at the
first position below a node labeled by a. INSlast inserts at the last position
and INSinto at an arbitrary position below a node labeled by a. INSbefore (resp.
INSafter) inserts a term of type p at the left (resp. right) sibling position to a
node labeled by a. DEL deletes a whole subterm whose root node is labeled
by a and RPL replaces a subterm by a sequence of terms of respective types
p1, . . . , pn. We call RPL1 the particular case of RPL with n = 1. Note that DEL
is also a special case of RPL, with n = 0.

The insertion rules of UFO (the rules called INS∗) do not change the label of
the node at the top of the lhs of the rules. Only the rule REN permits to change
the label of a node in a term, while preserving the other nodes.

Example 3. The data of patients in a hospital is stored in an XML document
whose DTD can be characterized by an HA A with the following transition rules

hospital({ppa, pepa}∗) → ph, patient(pn) → pepa,
patient(pn pt) → ppa, name(p∗c) → pn,

treatment(pdr pdia pda) → pt, drug(p∗c) → pdr,
diagnosis(p∗c) → pdia, date(p∗c) → pda

a → pc, b → pc, c → pc . . .

The state ph is the entry point of the DTD i.e. it represents the type of the
root element.

A DEL rule patient(x) → () will delete a patient in the base and a INSlast
rule hospital(x) → hospital(x ppa) will insert a new patient, at the last position
below the root node hospital. We can ensure that the patient newly added has an
empty treatment list (to be completed later) using hospital(x) → hospital(x pepa).
A INSafter rule name(x) → name(x) pt can be used to insert later a treatment next
to the patient’s name. 3
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input language rules post∗ pre∗

HA UFOreg HA, PTIME Th.1
HA UFO CF-HA, PTIME Th.2 HA, EXPTIME Th. 3

CF-HA UFO CF-HA, PTIME Th.2

Figure 2: Summary of results

We propose also in Figure 1 another primitive not in [8]: DELs deletes a
single node n whose arguments inherit the position. In other words, it replaces
a term with the hedge containing its children. This operation is employed to
build user views of XML documents e.g. in [15], and can also be useful for
updates as well.

Example 4. Assume that some patients of the hospital of Example 3 are
grouped in one department like in hospital(. . . surgery(p∗pa) . . .), and that we want
to suppress the department surgery while keeping its patients. This can be done
with the DELs rule surgery(x) → x. 3

We will see in Section 4.2 that allowing the primitive INSbefore, DELs or RPL has
important consequences w.r.t. type inference. Indeed, the subclass UFOreg of
primitives preserves languages of HA whereas the operations in the second col-
umn of the table in Figure 1 (types RPL, INSbefore, INSafter, DELs) may transform
a HA language into a CF-HA language.

4. Type Inference for the Iteration of Update Primitives

In this section, we study the problem of forward and backward type infer-
ence for arbitrary finite iterations of primitive update operations of the above
kind, taken in a given set. More precisely, we present constructions of HAs
recognizing: the forward closure of a HA language under rules of type in UFOreg

(Section 4.1) and the backward closure of a HA language under arbitrary rules of
UFO (Section 4.3), and we present the construction of a CF-HA recognizing the
forward closure of a CF-HA language under arbitrary rules of UFO (Section 4.2).
The results are summarized in Figure 2.

4.1. Regular Forward Type Inference for the Iteration of Some Update Primi-
tives

We want to characterize the sets of terms which can be obtained, from terms
of a given type, by arbitrary application of updates operations defined as PTRS
rules. For this purpose, we shall study the recognizability (by HA and CF-HA)
of the forward closure (post∗) of automata languages under the above rewrite
rules. We start with a subset of this family of rewrite rules which preserve HA
languages, under iterated application.

Theorem 1. Let A be a HA on Σ, R/A be a PTRS containing UFO rules of
type UFOreg and let L be a HA language. Then post∗R/A(L) is the language of
an HA of size polynomial and which can be constructed in PTIME in the size
of R/A and of an HA recognizing L.

10



Proof. We will construct a HAA′ with δ- and ε-transitions recognizing post∗R/A(L).
First, in order to simplify the construction, we shall assume the same HA both
for defining the parameters of the rewrite system and for defining the language L.
Let A = (Σ, P, P f ,Θ), and let AL = (Σ, QL, Q

f
L,∆L) be a HA recognizing L.

We assume wlog that both A and AL are normalized and complete and that
their respective state sets P and QL are disjoint.
Let A0 = (Σ, Q0, Q

f
0,∆0) be the normalized disjoint union of A and AL, defined

by Q0 = P ⊎ QL, Q
f
0 = Qf

L, and ∆0 is obtained by the disjoint union of Θ
and ∆L, and by the application of a normalization procedure, as in Lemma 3.
Clearly, it holds that post∗R/A0

(L) = post∗R/A(L). Below, the states of Q0 will
be indifferently denoted by the letters q or p.
For each a ∈ Σ and q ∈ Q0, let La,q be the regular language in the transition
(assumed unique) a(La,q) → q ∈ ∆0, and let Ba,q =

(

Q0, Sa,q, ia,q, {fa,q},Γa,q

)

,
be a finite automaton recognizing La,q, with an input alphabet Q0, a set of states
Sa,q, an initial state ia,q ∈ Sa,q, a unique final state fa,q ∈ Sa,q distinct from ia,q,
and a set of transition rules Γa,q ⊆ Sa,q ×Q0 × Sa,q. The above hypotheses on
Ba,q are not restrictive (Ba,q may contain ε-transitions). In particular,

if La,q = ∅, then we assume that Sa,q = {ia,q, fa,q} and Γa,q = ∅, and

if La,q = {ε} then we assume that Sa,q = {ia,q, fa,q} and Γa,q = {ia,q −→
ε

fa,q}.

The sets of states Sa,q are assumed pairwise disjoint. Let S be the disjoint union
of all Sa,q for all a ∈ Σ and q ∈ Q0, and let Γ0 be the disjoint union of all Γa,q

for a ∈ Σ, q ∈ Q0 (Γ0 is a set of transition rules over S × (P ∪ QL) × S). We
shall complete incrementally Γ0 into Γ1, Γ2,... by adding some transitions rules,
according to a case analysis of the update rules of R/A0. At each step i, for
each a ∈ Σ and q ∈ Q0, we let Bi,a,q be the automaton (Q0, S, ia,q, {fa,q},Γi).

Moreover, we construct incrementally, in the case analysis, a set of δ- and
ε-rules. We start with C0 = ∅ and complete it into C1, C2,... by adding some δ-
and ε-rules. Finally, we let, for each step i ≥ 0

∆i :=
{

a
(

Bi,a,q

)

→ q
∣

∣ a ∈ Σ, q ∈ Q0

}

∪ Ci and Ai = (Σ, Q0, Q
f
0,∆i).

The constructions of the sequences (Γi) and (Ci) (and hence (∆i)) work in
parallel, by iteration of the following case analysis: assuming that (Γi, Ci) is the
last pair built, we define Γi+1 and Ci+1 by application of the first case below
such that Γi+1 6= Γi or Ci+1 6= Ci.

For all i ≥ 0, a ∈ Σ, q0 ∈ Q0, we say that Bi,a,q0 is inhabited if there exists
a word q1 . . . qm ∈ L(Bi,a,q0) with m ≥ 0 and L(Ai, qj) 6= ∅ for all j, 1 ≤ j ≤ m.
This condition can be decided in polynomial time using a classical state marking
algorithm (see e.g. [9]).

REN if R/A0 contains a rule a(x) → b(x), and q0 ∈ Q0,
then Γi+1 = Γi ∪ {ib,q0 −→

ε
ia,q0 , fa,q0 −→

ε
fb,q0}, and Ci+1 = Ci.

INSfirst if R/A0 contains a rule a(x) → a(p x), and q0 ∈ Q0,
then Γi+1 = Γi ∪ {ia,q0 −→

p
ia,q0}, and Ci+1 = Ci.

INSlast if R/A0 contains a rule a(x) → a(x p), and q0 ∈ Q0,
then Γi+1 = Γi ∪ {fa,q0 −→

p
fa,q0}, and Ci+1 = Ci.

11



INSinto ifR/A0 contains a rule a(xy) → a(x p y), q0 ∈ Q0, and s ∈ S is reachable
from ia,q0 using the transitions of Γi,
then Γi+1 = Γi ∪ {s −→

p
s}, and Ci+1 = Ci.

RPL1 if R/A0 contains a rule a(x) → p, q0 ∈ Q0, and Bi,a,q0 is inhabited,
then Γi+1 = Γi, and Ci+1 = Ci ∪ {p −→

ε
q0}.

DEL if R/A0 contains a rule a(x) → (), q0 ∈ Q0, and Bi,a,q0 is inhabited,

then Γi+1 = Γi, and Ci+1 = Ci ∪ {() −→
δ

q0}.

Note that the above construction, in the cases of insertion rules, add new looping
transitions which summarize several insertions. Such constructions are compa-
rable to acceleration techniques used in model checking [35].

Only a finite number of transitions can be added to Γi and Ci, hence even-
tually, a fixpoint Ak is reached, that we will also denote A′. The proof that the
above construction is correct, i.e. that L(A′) = post∗R0/A0

(L), is quite long but
straightforward. Finally, using Lemma 1 we can remove the δ- and ε-transitions
of A′ and conclude. 2

Example 5. Let A be the HA of Example 3, let R/A = {hospital(x) →
hospital(x pepa)}, and let L be recognized by a HA AL with states qh, qpa, qn, qt,
qdr, qdia, qda, qc, a unique final state qh, one transition rule hospital(q∗pa) → qh,
and transition rules for every other symbol (patient, name,...) which mimic the
corresponding transitions of A, where every state pa is replaced by qa.

Let us see how the completion procedure described in the the above proof is
running on this input. Following the above hypotheses, it holds that Bhospital,qh

(hence Γ0) contains 2 transitions: one loop ihospital,qh −−→
qpa ihospital,qh and one

ε-transition ihospital,qh −→
ε

fhospital,qh (fhospital,qh −−→
qpa fhospital,qh and ihospital,qh −→

ε

fhospital,qh was another possibility, we choose the first option arbitrarily, wlog).
The completion introduces one new looping transition fhospital,qh −−−→

pepa fhospital,qh
(above case INSlast), which means that in the obtained HA A′, the transition
hospital(q∗pa) → qh is replaced (after normalization) by hospital(q∗pa p

∗
epa) → qh.

The automaton Bhospital,ph
, for the rule of A hospital({ppa, pepa}∗) → ph is also

completed similarly, and the completion stops after 2 steps. Some other tran-
sitions are added but are not important (they do not change the recognized
language).

The HAA′ obtained recognizes (in its final state qh) the set of terms hospital(hpa hepa),
where hpa and hepa are finite sequences of terms respectively of the form
patient(name(. . .) treatment(. . .)) and patient(name(. . .)). 3

Example 6. Let A be again the HA of Example 3, let R/A = {hospital(x) →
hospital(ph x), patient(x) → ()}, and let L = {hospital(patient)}. This language
is recognized by the following HA

AL =
(

{q0, q1}, {q1}, {patient → q0, hospital(q0) → q1}
)

.

The completion adds some looping transitions ihospital,q1 −−→
ph ihospital,q1 and ihospital,ph

−−→
ph

ihospital,ph
(case INSfirst), and two δ-transitions () −→

δ
q0 and () −→

δ
ppa (case

DEL). Note that the later δ-transitions are added because L(B0,patient,q0) 6= ∅
(it contains the empty word) and L(B0,patient,ppa

) 6= ∅. Some other transitions
are added but are not important. Hence, in addition to the transitions of A
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and AL, the completed HA A′ contains the transitions hospital(p∗h q0) → q1,
hospital({p∗h ppa pepa}

∗) → ph, and the 2 above δ-transitions. 3

Corollary 1. Typechecking is EXPTIME-complete for the iteration of rules of
type in UFOreg and PTIME-complete when the output type is given by a deter-
ministic and complete HA.

Proof. Let τin and τout be two HA languages (resp. input and output types),
and let R/A by a PTRS. We want to know whether post∗R/A(τin ) ⊆ τout .

Following Theorem 2, post∗R/A(τin) is a HA language. Hence post∗R/A(τin )∩τout
is a HA language. The size of the HA for the complement τout can be exponential
in the size of the HA for τout if this latter HA is non-deterministic, and it is
polynomial otherwise. Testing the emptiness of the above intersection language
solves the problem.

Regarding the lower bounds, the EXPTIME-hardness follows the fact that
the inclusion problem is already EXPTIME-complete for ranked tree automata [37],
and the PTIME-hardness from the fact that the inclusion problem is PTIME-
hard for deterministic HA. 2

Regarding the problem of type synthesis, if we are given R/A and an input
type τin as a HA, Theorem 2 provides in PTIME an output type presented as
a HA of polynomial size.

4.2. CF Forward Type Inference for the Iteration of All Update Primitives

Theorem 1 is not true for all the rules of UFO: some rules of UFO do not
preserve HA languages in general. It is evident for RPL.

Example 7. Let Σ = {a, b, c, d}, let L = {d(a)}, let A be the HA

A =
(

Σ, {pa, pb, pc}, {}, {a → pa, b → pb, c → pc}
)

,

and letR/A contains the single RPL rule a(x) → pbpapc. It holds that post
∗
R/A(L) =

{d(bn a cn) | n ≥ 0}, which is a CF-HA language but not a HA language. 3

The examples below show that there is also no preservation of HA languages
for rules of type DELs and combinations of INSbefore, INSafter and REN.

Example 8. Let Σ = {a, b, c}, let R be the finite TRS with one DELs rule
c(x) → x and let L be the HA language containing exactly the terms c(ac(a . . . c . . . b)b);
it is recognized by the HA with the set of transition rules

{

a → qa, b →

qb, c
(

{(), qa q qb}
)

→ q
}

. We have post∗R(L) ∩ c
(

{a, b}∗
)

= {c(anbn) | n ≥ 0},
hence post∗R(L) is not a HA language. 3

The above example involves the primitive DELs which does not correspond
to the deletion primitive of [8]. However, a similar result can be achieved by
simpler insertion rules.

Example 9. Let Σ = {a, b, a′, b′, c} andA =
(

Σ, {p0, p1, p2, p3}, ∅, {0 → p0, 1 →

p1, 2 → p2, 3 → p3}
)

, and let us consider a R/A with the following rules

a(x) → p0 a(x)
a(x) → a′(x)
a′(x) → a′(x) p2
a′(x) → b(x)

b(x) → p1 b(x)
b(x) → b′(x)
b′(x) → b′(x) p3
b′(x) → a(x) b′(x) → ()

13



The intersection of the closure post∗R/A

(

{c(ab)}
)

with
{

c
(

(0∗1∗)n(3∗2∗)m
)

|

n,m ≥ 0
}

(the latter is a HA language) is the set
{

c
(

(0∗1∗)n(3∗2∗)n
)

| n ≥ 0
}

which is not a HA language. 3

However, we prove in Theorem 2 that the image of a HA language under
arbitrary iterations of rewrite rules in the class UFO belongs to CF-HA. In the
construction of Theorem 2, we use, as a technical convenience, a new kind of
transitions called collapsing transitions with lookahead (cl -transitions).
Assume given a set of states Q and a finite set P of expressions of the form a(L)
where a ∈ Σ and L ⊆ Q∗ is a context-free language (presented e.g. by a CF
grammar over Q). A cl -transition is a rule of the form L′ → q where L′ is a CF
language over Q ∪ P .

The extension of the move relation for these transitions is defined by u[u1 . . . un] −−→A
u[q] if every ui is either a state of Q or a term a(q1 . . . qm) with a ∈ Σ and
q1, . . . , qm ∈ Q, there exists a cl -transition L′ → q of A and u1 . . . un ∈ L′. The
languages of HA and CF-HA extended with cl -transitions are defined accord-
ingly.

Lemma 4. Every CF-HA A extended with a finite number of cl-transitions can
be transformed in polynomial time into a CF-HA A′ (without collapsing or cl-
transitions) such that L(A′) = L(A) ∩ T (Σ).

Proof. For every cl -transitions L′ → q, we introduce: one new state qa(L) for
every expression a(L) occurring in L′, one new CF-HA transition a(L) → qa(L)

and one new collapsing transition L′′ → q where L′′ is obtained from L′ by
replacing every expression a(L) by qa(L). The cl -transition L′ → q is then
deleted. After these operations, we obtain a new CF-HA A′′ extended with
collapsing transitions. It is easy to see that L(A′′) = L(A). We can conclude
by applying Lemma 2. 2

Theorem 2. For all HA A on Σ, PTRS R/A ∈ UFO, and HA language L,
post∗R/A(L) is the language of a CF-HA of size polynomial and which can be

constructed in PTIME in the size of R/A and of an CF-HA recognizing L.

Proof. The construction is essentially the same as for Theorem 1, with the
incremental definition of a finite sequence A0,A1, . . . by addition of transitions.
The only difference is that the automata A0, . . . are HA with collapsing and
cl -transitions, and not simply δ- and ε-transition as in the case of Theorem 1.
More precisely, let A = (Σ, P, P f ,Θ) and AL = (Σ, QL, Q

f
L,∆L) be normalized

and complete disjoint HAs, with AL recognizing L, and let A0 = (Σ, Q0, Q
f
0,∆0)

be their normalized disjoint union. For each a ∈ Σ and q ∈ Q0, the automaton
Ba,q =

(

Q0, Sa,q, ia,q, {fa,q},Γa,q

)

, is defined like in the proof of Theorem 1,
and Γ0 is the disjoint union of all transition sets Γa,q. We define an increasing
(wrt inclusion) sequence Γ0,Γ1, ... by addition of finite automata transitions.
For all i ≥ 0, and all a ∈ Σ and q ∈ Q0, we let Bi,a,q be the automaton
(Q0, S, ia,q, {fa,q},Γi).

Moreover, we also consider C0 = ∅ and define an increasing sequence C0, C1, . . .
by addition of collapsing transitions and cl -transitions. The construction of
both sequences work in parallel, by the iteration of a case analysis, for each
type of rewrite rule, until a fixpoint is reached. At each step i ≥ 0, we let
∆i :=

{

a
(

Bi,a,q

)

→ q
∣

∣ a ∈ Σ, q ∈ Q0

}

∪ Ci and Ai = (Σ, Q0, Q
f
0,∆i).

14



The constructions for the cases REN, INSfirst, INSlast, INSinto, are exactly the
same as in the proof of Theorem 1. The cases DEL and RPL1 are particular
cases of RPL. The other cases, INSbefore, INSafter, RPL, DELs are treated al-
together below, by the addition of cl -transitions. We use in this construction
a binary relation � over Σ defined as the reflexive and transitive closure of
{(a, b) | a(x) → b(x) ∈ R/A}.

let a ∈ Σ, q0 ∈ Q0, and let P1 = {p | a(x) → p a(x) ∈ R/A0}, P2 = {p |
a(x) → a(x) p ∈ R/A0}, P3 =

{

p1 . . . pn | a(x) → p1 . . . pn ∈ R/A0

}

, and
P4 = L(Bi,a,q0) if R/A0 contains a rule a(x) → x, or P4 = ∅ otherwise.
If P1 ∪ P2 ∪ P3 ∪ P4 6= ∅ and Bi,a,q0 is inhabited, then Γi+1 = Γi, and
Ci+1 = Ci ∪ {P ∗

1

(

b(L(Bi,b,q0)) | P3 | P4

)

P ∗
2 → q0 | a� b}.

Note that the above sets P1 to P4 only depend on R/A, and not on the current
state of the construction. In this case, like for the other insertion primitives, we
use an acceleration. This trick was necessary to the correctness of the construc-
tion.

We assume that the automata Bi,a,q0 in the above cl -transitions are dynam-
ically updated at each construction step, i.e. at step i + 1, P ∗

1

(

b(L(Bi,b,q0)) |

P3 | L(Bi,a,q0)
)

P ∗
2 → q0 (when P4 6= ∅) is replaced by P ∗

1

(

b(L(Bi+1,b,q0)) | P3 |

L(Bi+1,a,q0)
)

P ∗
2 → q0. The idea is that the language below a is defined by

pointers to the states ia,q0 and fa,q0 and the current transition set Γi.
With the two above tricks (acceleration and pointers), the incremental con-

struction terminates with a fixpoint after a polynomial number k of iterations.
Let A′ = Ak. It is a HA extended with collapsing and cl -transitions. The proof
that L(A′) = post∗R0/A0

(L) follows the same principle as for Theorem 1. It can
be found in Appendix B. Finally, using Lemma 2 and Lemma 4 we can conclude
that post∗R/A(L) is a CF-HA language. 2

The above result still holds when L is a CF-HA language. In this case, we
consider CF grammars instead of finite automata in the completion process.
The case of rewrite rules handled in Theorem 1 are treated by the addition of
production rules of regular grammars. The other cases are treated exactly as
above.

Example 10. Let us come back again to Example 3, with a slight varia-
tion A′ of A, obtained by the replacement of the rule patient(pn) → pepa by
patient′(pn) → pepa, where patient′ is a new symbol (for patients without treat-
ment). We consider the following PTRS

R/A′ = {patient′(x) → patient(x), patient(x) → pt patient(x), }

and the language L = {hospital(patient′)} recognized by the following HA

AL =
(

{q0, q1}, {q1}, {patient
′ → q0, hospital(q0) → q1}

)

.

The above completion procedure introduce the following automata ε-transitions
(case REN): ipatient,q −→

ε
ipatient′,q fpatient′,q −→

ε
fpatient,q for all states q (actually

only ppa, pepa and q0 are relevant in this case). Moreover, the following cl -
transitions are added (case INSbefore): p

∗
t patient(L(Bk,patient,q)) → q where q is

ppa or q0 and k is the last completion step.
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The automaton obtained after the completion recognizes hospital(patient′)
and all the terms of the form hospital(t1 . . . tn patient) where n ≥ 0 and t1, . . . , tn ∈
L(A′, pt). 3

Corollary 2. Typechecking is EXPTIME-complete for UFO and PTIME-complete
when the output type is given by a deterministic and complete HA.

Proof. The proof for the upper bound works as in Corollary 1, because the
intersection of a CF-HA and a HA language is a CF-HA language (there is an
effective PTIME construction of an CF-HA of polynomial size), and emptiness of
CF-HA is decidable in PTIME. The arguments of Corollary 1 for lower bounds
are still valid here because HA are special cases of CF-HA. 2

Regarding the problem of type synthesis for a R/A in UFO, if an input type
τin is given as a HA or CF-HA, then Theorem 2 provides in PTIME an output
type, presented as a CF-HA of polynomial size. Unlike HA, CF-HA are not
popular type schemes, but HA solely do not permit to extend the results of
Theorem 2 to the whole class UFO, in particular for the operations INSbefore,
INSafter and RPL of [8], as we have seen above.

One may wonder to what extent the CF-HA produced by Theorem 2, given
a HA for L and a R/A, is actually an HA. This problem is actually undecid-
able, since the problem of knowing whether a given CF language is regular is
undecidable and every CF language can be described by the closure post∗R/A(L)

for some A, R and L (see Example 7).

4.3. Regular Backward Type Inference for the Iteration of All Update Primitives

Since UFO rules do not preserve HA languages (by iteration), we may at-
tempt to perform typechecking using pre∗ computations (backward type infer-
ence), like e.g. for k-pebble tree transducer [28]. The next theorem shows that
this is indeed possible, though EXPTIME, since the class of HA languages is
preserved by pre∗ when using UFO rules.

Theorem 3. Given a HA A on Σ and a PTRS R/A ∈ UFO, for all HA lan-
guage L, pre∗R/A(L) is the language of a HA of size exponential and which can

be constructed in EXPTIME in the size of R/A and of an HA recognizing L.

Proof. Let A = (Σ, P, P f ,Θ), and let AL = (Σ, QL, Q
f
L,∆L) be a HA recog-

nizing L. We assume wlog that both A and AL are normalized and complete.
Let P0 = P ∪ QL, Q

f
0 = Qf

L and ∆0 = Θ ∪ ∆L. We assume given, for each
a ∈ Σ, q ∈ Q0, a finite automaton Ba,q = (P0, Sa,q, ia,q, {fa,q},Γa,q) recognizing
the regular language La,q in the transition a(La,q) → q ∈ ∆0, and following the
assumptions described in the proof of Theorem 1. Moreover, for all a, b ∈ Σ,
and all states s, s′ of Ba,q, we add a new state qb,s,s′ . In other words, we let

Q0 = P0 ∪ {qb,s,s′ | a, b ∈ Σ, q ∈ P0, s, s
′ ∈ Sa,q}.

Let C be the smallest set of of finite automata over Q0 such that:

• C contains every Ba,q for a ∈ Σ, q ∈ P0,

• for all B ∈ C, B = (Q0, S, i, F,Γ) and all states s, s′ ∈ S, the automaton
Bs,s′ := (Q0, S, s, {s′},Γ) is in C,
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• for all B ∈ C, B = (Q0, S, i, F,Γ) ∈ C, q ∈ Q0 and all states s, s′ ∈ S,
the automata (Q0, S, i, F,Γ ∪ {s −→

q
s′}) and (Q0, S, i, F,Γ ∪ {s −→

ε
s′}),

respectively denoted by B + s −→
q

s′ and B + s −→
ε

s′ also belong to C.

Note that C is finite with this definition, though exponential. Moreover, every
B ∈ C has a unique final state which we will denote fB and its initial state is
denoted iB. For the sake of notations, we make no distinction below between
B ∈ C and its language L(B).

Let A0 = (Σ, Q0, Q
f
0,∆0). We will incrementally add transitions to A0,

according to the rules of R/A, until a fixpoint automaton is reached which
recognizes pre∗R/A(L). More precisely, we construct a finite sequence of HA

A0,A1, . . . ,Ak, where for all i ≤ k, Ai = (Σ, Q0, Q
f
0,∆i), and such that the

language of the final element Ak is pre∗R/A(L). The transition sets ∆i are
constructed recursively by iteration of the following case analysis until a fixpoint
is reached (only a finite number of transitions can be added in the construction).

We use below an extension of the move relation of HA, from states to set of
states (single states are considered as singleton sets), defined by a(M1 . . .Mp) →֒∆i

q0 (where M1, . . . ,Mp ⊆ Q0 and q0 ∈ Q0) iff there exists a transition a(N) →
q ∈ ∆i such that M1 . . .Mp ⊆ N .

REN if a(x) → b(x) ∈ R/A, B ∈ C and q ∈ Q0, such that b(B) →֒∆i
q, then let

∆i+1 := ∆i ∪ {a(B) → q}.

INSfirst if a(x) → a(p x) ∈ R/A, B ∈ C and q, qp ∈ Q0, such that L(Ai, qp) ∩
L(A, p) 6= ∅ and a(qp B) →֒∆i

q, then ∆i+1 := ∆i ∪ {a(B) → q}.

INSlast if a(x) → b(x p) ∈ R/A, B ∈ C and q, qp ∈ Q0, such that L(Ai, qp) ∩
L(A, p) 6= ∅ and a(B qp) →֒∆i

q, then ∆i+1 := ∆i ∪ {a(B) → q}.

INSinto if a(xy) → a(x p y) ∈ R/A, B ∈ C, s, s′ are states of B, and q, qp ∈ Q0,
such that L(Ai, qp) ∩ L(A, p) 6= ∅, s −−→

B

qp s′, and a(B) →֒∆i
q

then ∆i+1 := ∆i ∪
{

a(B + s −→
ε

s′) → q
}

.

INSbefore if a(x) → p a(x) ∈ R/A, b ∈ Σ, B,B′ ∈ C, s, s′ are states of B, and
q, qp, q

′ ∈ Q0 such that b(B) → q ∈ ∆i, a(B′) →֒∆i
q′, L(Ai, qp)∩L(A, p) 6=

∅, s −−−→
B

qpq
′

s′, then ∆i+1 := ∆i ∪
{

b(B + s −−→
q′

s′) → q
}

.

INSafter if a(x) → a(x) p ∈ R/A, b ∈ Σ, B,B′ ∈ C, s, s′ are states of B, and
q, qp, q

′ ∈ Q0 such that b(B) → q ∈ ∆i, a(B′) →֒∆i
q′, L(Ai, qp)∩L(A, p) 6=

∅, s −−−→
B

q′qp s′, then ∆i+1 := ∆i ∪
{

b(B + s −−→
q′

s′) → q
}

.

RPL if a(x) → p1 . . . pn ∈ R/A, b ∈ Σ, B,B′ ∈ C, s, s′ are states of B, and
q, q′, q1, . . . , qn ∈ Q0 such that b(B) → q ∈ ∆i, a(B

′) →֒∆i
q′, L(Ai, qj) ∩

L(A, pj) 6= ∅ for all 1 ≤ j ≤ n, s −−−−−→
B

q1...qn s′

then ∆i+1 := ∆i ∪
{

b(B + s −−→
q′

s′)) → q
}

.

DEL if a(x) → () ∈ R/A, b ∈ Σ, B,B′ ∈ C, s is a state of B, q, q′ ∈ Q0 such that

b(B) → q ∈ ∆i, a(B
′) →֒∆i

q′, then ∆i+1 := ∆i ∪
{

b(B + s −−→
q′

s) → q
}

.

DELs if a(x) → x ∈ R/A, b ∈ Σ, B ∈ C, s, s′ are states of B, q ∈ Q0 such that
b(B) → q ∈ ∆i, then ∆i+1 := ∆i ∪

{

b(B + s −−−−→
qa,s,s′ s′) → q, a(Bs,s′) →

qa,s,s′} ∪ {a(qf) → qf | qf ∈ Qf
0}
}

.
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Note that RPL1 is a special case of RPL. No state is added to the original
automaton A0 and all the transitions added involve horizontal languages of
the set C, which is finite (every transition of A′ has the form a(B) → q0 for
some B ∈ C), hence the iteration of the above operations terminates with an
automaton A′. We show in Appendix C that L(A′) = pre∗R/A(L). 2

Example 11. We modify slightly the DTD Example 3 in order to represent
departments in an hospital, with two additional transition rules for A: (for the
sake of readability, we write below h for hospital, p for patient and s for surgery):

h({pdpt, ppa, pepa}
∗) → ph, s({ppa, pepa}

∗) → pdpt,

and let R/A contains the DELs rule of Example 4: s(x) → x, which suppress
the department s while keeping its patients.

Let L = h(p) be recognized by the HAAL =
(

{q0, q1}, {q1}, {p → q0, h(q0) →

q1}
)

. Following our assumptions on the finite automata (see proof of Theo-
rem 1), Bp,q0 and Bh,q1 contain each one transition, respectively ip,q0 −→

ε
fp,q0

and ih,q1 −−→
q0 fh,q1 .

The rule s(x) → x causes the addition of the transitions s(q1) → q1, p
(

Bp,q0+

s −−−−→
qs,s,s′ s′

)

→ q0, s(Bp,q0,s,s′) → qs,s,s′ for all s, s
′ ∈ {ip,q0 , fp,q0}, and h

(

Bh,q1 +

s −−−−→
qs,s,s′ s′

)

→ q0, s(Bh,q1,s,s′) → qs,s,s′ for all s, s
′ ∈ {ih,q1 , fh,q1}.

In particular, the terms h(s(p)) and h(s(s(p))) are accepted with the respec-
tive runs q1(qs,ih,q1 ,fh,q1 (q0)) and q1(qs,ih,q1 ,fh,q1 (qs,ih,q1 ,fh,q1 (q0))). 3

Regarding the problem of type synthesis for a R/A ∈ UFO, if an output type
τout is given, then Theorem 3 provides in EXPTIME an input type, presented
as a HA of exponential size.

4.4. Toward typechecking XQuery Updates

We have considered above the application to documents of a given input
type of arbitrary sequences of update primitives (amongst a given finite set
of primitives). Our results can be applied to the verification of set of allowed
updates primitives, see in particular Section 5 and application to the verification
of access control policies for updates.

In the XQuery Update Facility [8] however, an update is not just an update
primitive. It is an XQuery expression u containing update primitives which is
interpreted in several phases on a given document t. First, u is converted into a
sequence w of primitive updates to be applied to t (the pending list generated by
u over t). The sequence w is then analysed (sanity check) and possibly modified
into w′ (according to a priority order for the update primitives) and afterward
w′ is applied to t, giving the updated document t′.

[2] propose an abstract representation of the set of the pending lists which
can be generated by an update expression u over the trees in an input type
L (e.g. an HA language), by a regular expression Ω over the alphabet of all
possible update primitives. Ω is called effect expression in [2]. The alphabet
of update primitives corresponds roughly to the set of rewrite rules presented
in Figure 1. Note that for a given Σ, a fixed HA A, and a fixed number n for
RPL, this set is finite. Let us call it R/A. Hence it seems that the effect of the
application of u to the trees in L can be represented in our settings, by the set

postΩR/A(L) = {h′ ∈ H(Σ) | ∃h ∈ L, ∃r1 . . . rn ∈ Ω, h −−→
r1

. . . −−→
rn

h′}.
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The computation of postΩR/A(L) (given a finite PTRS R/A, Ω a regular ex-

pression over R/A and an HA recognizing L) is an interesting problem, appar-
ently related to the study of languages of context-free grammars with regulated
rewriting [11], and is left to further work.

5. ACP for XML Updates

In this last section we study some models of Access Control Policies (ACP)
for the update operations defined in Section 3, and the verification problems
for these ACP. We consider two kind of formalisms from the literature for the
specification of XML ACPs. The first formalism is the most widespread. It
consists in defining an ACP as a set of updates rules, partitioned into authorized
and forbidden operations. The second one is a more recent proposal of [17] based
on [15], where the ACP is defined by adding security annotations to a DTD.

5.1. Local Consistency of Rule-based ACPs

An ACP for XML updates can be defined by a pair (Ra/A,Rf/A) of PTRS,
where Ra contains allowed operations and Rf contains forbidden operations (see
e.g. [6]). Such an ACP is called inconsistent [6, 17] if some forbidden operation
can be simulated through a sequence of allowed operations, i.e. if there exists
t, u ∈ T (Σ) such that t −−−−→

Rf/A
u and t −−−−→

∗

Ra/A
u.

Example 12. Assume that in the hospital document of Example 3, it is for-
bidden to rename a patient, that is the following update of RPL1 is forbidden:
name(x) → pn. If the following updates are allowed: patient(x) → () for deleting
a patient, and hospital(x) → hospital(x ppa) to insert a new patient, then we have
an inconsistency in the sense of [6] since the effect of the forbidden update can
be obtained by a combination of allowed updates. 3

Using the results of Section 3, we can decide the above problem individually for
terms of T (Σ). More precisely, we solve the following problem called local incon-
sistency: given a HA A over Σ and a term t ∈ T (Σ), an ACP (Ra/A,Rf/A) is
locally inconsistent if there exists u ∈ T (Σ) such that t −−−−→

Rf/A
u and t −−−−→

∗

Ra/A
u?

Theorem 4. Local inconsistency is decidable in PTIME for UFO ACPs. 2

Proof. It can be easily shown that the set {u ∈ T (Σ) | t −−−−→
Rf/A

u} is the

language of a HA of size polynomial and constructed in PTIME on the sizes
of A, Rf and t. By Theorem 2, post∗Ra/A

({t}) is the language of a CF-HA of
polynomial size and constructed in polynomial time on the sizes of A, Ra and
t. The ACP is locally inconsistent w.r.t. t iff the intersection of the two above
languages is not empty, and this property can be tested in PTIME. 2

It is shown in [17] that inconsistency is undecidable for an ACP defined
by a pair of rewrite system (Ra,Rf) of a kind strictly more general than the
above PTRS (roughly, they extend the PTRS with the possibility to select the
rewrite positions by XPath expressions). Moreover, for such rewrite systems,
the problem of reachability (whether a given term t can be obtained from a given
term s using instances of rules ofRa which are not inRf) is also undecidable [29],
therefore local consistency is undecidable as well in this case. A decidable
fragment is also presented in [29]. It is an open question whether inconsistency
is decidable or not for PTRS of type UFOreg or UFO.
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5.2. Local Consistency of DTD-based ACPs

We recall that a DTD over Σ is functionD that maps Σ to regular expressions
over Σ. The dependency graph of a DTD D is a directed graph on the set of
vertices Σ such that the set of edges contains all (a, b) such that b occurs in the
regular expression D(a). A DTD is non recursive if this graph is acyclic.

Following the principle of DTD-based ACPs [15], [17] have proposed the
language XACUannot for the definition of ACP for XML updates in presence of
a DTD D. The idea is to add to D some security annotations specifying the
authorizations for the update operations for XML documents valid for D. This
formalism of [15, 17] imposes the condition that every document t to which we
want to apply an update operation (under the given ACP) must be valid for the
DTD D.

In our rewrite-based formalism, the latter condition may be expressed by
adding global constraints to the parametrized rewrite rules of Section 2.4. These
global constraints restrict the rewrite relation to terms in a given HA lan-
guage. Theorem 5 below shows that, unfortunately, adding such constraints
to parametrized rewrite rules of type REN or RPL makes the reachability unde-
cidable.

Given a HA A = (Σ, Q,Qf ,∆), a term rewriting system over Σ, parametrized
by A and with global constraints (PGTRS) is given by a PTRS, denoted R/A,
(see Section 2.4.2) and L ⊆ T (Σ) an HA language. We say that L is the
constraint of R. The rewrite relation generated by the PGTRS is defined as the
restriction of the relation defined in Section 2.4.2 to ground terms such that for
the application of a rule ℓ → r ∈ R/A to a term t, we require that t ∈ L.

Theorem 5. Reachability is undecidable for PGTRS’s with rules in UFOreg and
constraint given by a non recursive DTD. 2

Proof. The proof is a variant of the one given by A. Spelten [38] for subterm
and flat prefix rewriting. We reduce the halting problem of a Deterministic
Turing Machine (TM) M that work on half a tape (unbounded on the right).

TM configurations are encoded as flat terms. We consider the same tape
alphabet Γ = {0, 1, ♭}, (♭ is the blank symbol) of M, let S = {s1, s2, . . . , sn}
be the state set of M and Θ be the set of instructions of M. We consider the
following alphabet Σ for the representation of the configurations of M.

Σ := {g} ∪ {0, 1, ♭} ∪ (S × Γ) ∪ (Θ× Γ)}.

For instance, the TM configuration with tape abcde ♭ ♭ . . ., symbol d un-
der head, state s, will be represented by the following flat term of T (Σ):
g(abc〈s, d〉e ♭ ♭).

We shall also use a trivial HA automata A = (Σ, Q,Q,∆) which recognizes
only constant symbols by taking Q = {pσ | σ ∈ Σ} and ∆ = {σ → pσ | σ ∈ Σ}.

We define a PGTRS R/A such that every transition of M can be simulated
by a sequence of (at most three) rewrite steps with R/A. Let us first intro-
duce some standard auxiliary PTRS rules and some word regular languages for
controlling rule applications.

For each instruction θ of M of type: ”In state s reading a go to state r and
write b”, we define the following TRS rule: 〈s, a〉(x) → 〈r, b〉(x).
We also define the regular word language L〈s,a〉 = Γ∗〈s, a〉Γ∗.

20



For each instruction θ of M of type: ”In state s reading a go to state r and
move right”, we define the following PTRS rules of types REN and INSafter (we
recall that p♭ is a state of A):

b(x) → 〈θ, b〉(x) for all b ∈ {0, 1, ♭} ♭(x) → ♭(x) p♭
〈θ, b〉(x) → 〈r, b〉(x) for all b ∈ Γ. 〈s, a〉(x) → a(x)

We also define the regular word languages:

L〈s,a〉 = Γ∗〈s, a〉Γ∗

L〈θ,a〉 = Γ∗〈θ, a〉Γ∗ L〈s,a〉〈θ,b〉 = Γ∗〈s, a〉〈θ, b〉Γ∗ for all b ∈ Γ.

For each instruction θ of M of type: ”In state s reading a go to state r and
move left”, we define the following TRS rules:

b(x) → 〈θ, b〉(x) for all b ∈ {0, 1} 〈s, a〉(x) → a(x)
〈θ, b〉(x) → 〈r, b〉(x) for all b ∈ {0, 1}

We also define the regular word languages:

L〈s,a〉 = Γ∗〈s, a〉Γ∗

L〈θ,a〉 = Γ∗〈θ, a〉Γ∗ L〈θ,b〉〈s,a〉 = Γ∗〈θ, b〉〈s, a〉Γ∗ for all b ∈ {0, 1}.

The constraint of the PGTRS will be defined by the non recursive DTD
D : g → L where L is the finite union of the regular languages associated to the
instructions of M as above. Since the machine to be simulated is deterministic,
the union is disjoint.

Our final PGTRS is given by R/A and L so that the rewrite rules in R/A
can only be applied to terms satisfying the DTD D. With the above constraint,
the PGTRS rules of R/A can only be applied to terms valid for the DTD D,
ensuring a correct chaining for the application of these rules.

By case inspection we can show that for any couple of TM configurations
T1, T2 and their respective term encodings t1, t2, there is a sequence of transitions
from T1 to T2 iff t1 −−−−→

∗

R/A
t2. The theorem follows. 2

Note that the above result also holds for PGTRS’s whose rules are ground
(without variables nor parameters): in the above rewrite rules, every variable x
could be replaced by the empty hedge (), and every parameter such as p♭ could
be replaced by the corresponding ground term ♭. Hence the above result can be
contrasted with the decidability of reachability for ground term rewriting [19].

In [1] the authors study the more general problem of satisfiability for active
XML documents in the context and unranked unordered terms. This prop-
erty is shown decidable for insertions constrained by an unordered DTD, but
undecidable when they are constrained by an unordered HA.

Corollary 3. Local inconsistency is undecidable for PGTRS with rules in UFO

and with constraint given by a non recursive DTD.

6. Conclusion

We have proposed a model for the primitive XML updates operations of [8]
based on term rewriting systems parametrized by hedge automata (PTRS), and
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studied the problems of type inference and typechecking for arbitrary iteration
of such operations. We have also studied some extensions of the model with
restriction of the application of update operations to documents conforming to
a fixed non recursive DTD (PGTRS). Finally, we have shown how to apply our
results to show the decidability of the property of local inconsistency of access
control policies for XML updates.

One of our main results of forward type inference (Theorem 2) requires
to use CF-HA (a strict extension of hedge automata) for output types. One
may wonder whether this result could be adapted to compute regular over-
approximations of output types, leading to an approximating forward type in-
ference algorithm, in an approach similar to e.g. [39]. It could also be interesting
to apply a similar approach for studying updates of unranked unordered trees.

Acknowledgments. The authors wish to thank Serge Abiteboul, Pierre Bourhis,
Sebastian Maneth and Luc Segoufin for discussions about XML updates and ac-
cess control.
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Appendix

A. Proof of Theorem 1

We prove in this section the correctness of the automata construction pre-
sented in Section 4.1. More precisely, we show that the fixpoint HA with δ- and
ε-transitions A′, constructed in the proof of Theorem 1, given a PTRS R/A
and a HA AL recognizing the language L, is such that L(A′) = post∗R/A(L).

Lemma 5. L(A′) ⊆ post∗R/A(L).

Proof. We show more generally that for all q ∈ Q0 and all t ∈ L(A′, q), there
exists u ∈ L(A0, q) such that u −−−−→

∗

R/A
t.

The above computation of A′ on t involves some transition rules of A′ which
may be in A0 or have been added at some step i of the completion procedure
(remember that the rules constructed in the proof of Theorem 1 can be standard
HA rules of the form a(L) → q, or δ- of ε-rules). We call index of a transition
rule r, either 0 if r ∈ ∆0 or the smallest i > 0 such that r ∈ ∆i and r /∈ ∆i−1.
The proof of the Lemma works by induction on the multiset M of the indexes
of the transitions rules of A′ involved in the reduction t −−→

∗

A′ q.

Base case. If all the indexes in M are 0, then t ∈ L(A0, q) and we let u = t.

Induction step. Assume that the reduction t −−→
∗

A′ q has a measure M, and that
it involves a transition rule r ∈ ∆i+1 \∆i, r of index i+ 1 > 0. We analyze the
case that permitted the construction of this rule r.

REN. Assume that the application of r in the reduction t −−→
∗

A′ q involves an

ε-transition ib,q0 −→
ε

ia,q0 of Bi+1,b,q0 , and that this ε-transition was added to
Γi+1 because a(x) → b(x) ∈ R/A. Let

t = t[b(h)] −−→
∗

A′ t[b(q1 . . . qn)] −→r t[q0] −−→
∗

A′ q

be the above reduction of t by A′, such that the above ε-transition is involved in
the step t[b(q1 . . . qn)] −→r t[q0], where the transition r = b

(

L(Bi+1,b,q0)
)

→ q0 is

applied. Hence q1 . . . qn ∈ L(Bi+1,b,q0), with ib,q −−−−−−→
q1...qn

Bi+1,b,q0

fb,q0 , and the first step

in this computation is ib,q0 −→
ε

ia,q0 . The last step must be fa,q0 −→
ε

fb,q0 , using

an ε-transition added to Γi+1 in the same step as ib,q0 −→
ε

ia,q0 . By removing

these first and last steps, we get ia,q0 −−−−−→
q1...qn
Bi,a,q0

fa,q0 , hence q1 . . . qn ∈ L(Bi,a,q0).

Therefore, we have a reduction

t′ = t[a(h)] −−→
∗

A′ t[a(q1 . . . qn)] −−→Ai

t[q0] −−→
∗

A′ q.

Hence t′ ∈ L(A′, q), and the measure M′ of the above reduction t′ −−→
∗

A′ q is
strictly smaller than M. By induction hypothesis, it follows that there exists
u ∈ L(A0, q) such that u −−−−→

∗

R/A
t′. Since t′ = t[a(h)] −−−−→

R/A
t[b(h)] = t, with

a(x) → b(x), we conclude that u −−−−→
∗

R/A
t.

INSfirst. Assume that the application of r in the reduction t −−→
∗

A′ q involves a

transition ia,q0 −→
p

ia,q0 which has been added to Γi+1 because a(x) → a(p x) ∈
R/A. Let

t = t[a(tp h)] −−→
∗

A′ t[a(p q1 . . . qn)] −→r t[q0] −−→
∗

A′ q
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be the above reduction of t by A′, with tp ∈ L(A′, p), and such that the transi-
tion ia,q0 −→

p
ia,q0 is involved in the step t[a(p q1 . . . qn)] −→r t[q0], where the the

transition r = a
(

L(Bi+1,a,q0)
)

→ q0 is applied. Hence p q1 . . . qn ∈ L(Bi+1,a,q0),
with ia,q0 −−−−−−→

p q1...qn
Bi+1,a,q0

fa,q0 , and the first step in this computation is ia,q0 −→
p

ia,q0 .

By deleting this first step, we obtain the derivation ia,q0 −−−−−→
q1...qn
Bi,a,q0

fa,q0 , hence

q1 . . . qn ∈ L(Bi,a,q0). Therefore, we have a reduction

t′ = t[a(h)] −−→
∗

A′ t[a(q1 . . . qn)] −−→Ai

t[q0] −−→
∗

A′ q

(meaning that t′ ∈ L(A′, q)) with a measure M′ strictly smaller than M. By
induction hypothesis, it follows that there exists u ∈ L(A0, q) such that u −−→

∗

R
t′.

Moreover, the measure of the sub-reduction tp −−→∗
A′ p is strictly smaller

than M. Hence by induction hypothesis, there exists up ∈ L(A, p) such that
up −−−−→

∗

R/A
tp, and we have

t′ = t[a(h)] −−−−→
R/A

t[a(up h)] −−−−→
∗

R/A
t[a(tp h)] = t

(the first step uses a(x) → a(p x)). We conclude that u −−→
∗

R
t.

INSlast. this case is similar to the previous one.

INSinto. Assume that the application of r in the reduction t −−→
∗

A′ q involves an

transition s −→
p

s which was added to Γi+1 because a(xy) → a(xpy) ∈ R/A and
s ∈ S is reachable from ia,q0 for some q0 ∈ Q0. Let

t = t[a(h tp ℓ)] −−→
∗

A′ t[a(q1 . . . qn p q
′
1 . . . q

′
m)] −→

r
t[q0] −−→

∗

A′ q

be the above reduction of A′, with tp ∈ L(A′, p), and such that the transi-
tion s −→

p
s is involved in the step t[a(q1 . . . qn p q

′
1 . . . q

′
m)] −−→

A′ t[q0], where
the transition a(Bi+1,a,q0) → q0 is applied. More precisely, we assume that
q1 . . . qn p q

′
1 . . . q

′
m ∈ L(Bi+1,a,q0), because

ia,q −−−−−→
q1...qn

Bi,a,q0

s −−−−−−→
p

Bi+1,a,q0

s −−−−−→
Bi,a,q0

q′1...q
′

m fa,q.

By deleting the middle step s −→
p

s, we obtain ia,q −−−−−−−−−→
Bi,a,q0

q1...qn q′1...q
′

m fa,q, hence

q1 . . . qn q
′
1 . . . q

′
m ∈ L(Bi,a,q0). Therefore, we have a reduction

t′ = t[a(hℓ)] −−→
∗

A′ t[a(q1 . . . qn q
′
1 . . . q

′
m)] −−→

A′ t[q0] −−→
∗

A′ q

(hence t′ ∈ L(A′, q)) with a measure strictly smaller than M. By induction
hypothesis, it follows that there exists u ∈ L(A0, q) such that u −−−−→

∗

R/A
t′.

Moreover, the measure of the sub-reduction tp −−→
∗

A′ p is strictly smaller than M,

hence by induction hypothesis, there exists up ∈ L(A, p) such that up −−−−→
∗

R/A
tp.

Hence, we have a reduction

t′ = t[a(h ℓ)] −−−−→
R/A

t[a(hup ℓ)] −−−−→
∗

R/A
t[a(h tp ℓ)] = t

whose first step involves a(xy) → b(xpy), and we conclude that u −−−−→
∗

R/A
t.
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RPL1. Assume that r = p −→
ε

q0, and that this ε-transition was added to Ci+1

because a(x) → p ∈ R/A and Bi,a,q0 is inhabited. Let

t = t[tp] −−→
∗

A′ t[p] −→
r

t[q0] −−→
∗

A′ q

be the above reduction of t by A′, with tp ∈ L(A′, p). The measure of the sub-
reduction tp −−→

∗

A′ p is strictly smaller than M, hence by induction hypothesis,

there exists up ∈ L(A, p) such that up −−−−→
∗

R/A
tp.

Moreover, by hypothesis, there exists q1 . . . qm ∈ L(Bi,a,q0) (m ≥ 0) and
some terms s1 ∈ L(Ai, q1),. . . , sm ∈ L(Ai, qm) and hence we have a reduction

t′ = t[a(s1 . . . sm)] −−→
∗

Ai

t[a(q1 . . . qm)] −−→
∗

Ai

t[q0] −−→
∗

A′ q

with a measure strictly smaller than M. By induction hypothesis, it follows
that there exists u ∈ L(A0, q) such that u −−−−→

∗

R/A
t′. It holds that

t′ = t[a(s1 . . . sm)] −−−−→
R/A

t[up] −−−−→
∗

R/A
t[tp] = t

(the first rewrite step applies a(x) → p), and hence u −−−−→
∗

R/A
t.

DEL. Assume that r = () −→δ q0, and that this δ-transition was added to Ci+1

because a(x) → () ∈ R/A and Bi,a,q0 is inhabited. Let

t = t[ ] −→
r

t[q0] −−→
∗

A′ q

be the above reduction of t by A′. By hypothesis, there exists q1 . . . qm ∈
L(Bi,a,q0) and there exists some terms s1 ∈ L(Ai, q1),. . . , sm ∈ L(Ai, qm).
Hence we have a reduction

t′ = t[a(s1 . . . sm)] −−→
∗

Ai

t[q0] −−→
∗

A′ q

of measure strictly smaller than M. By induction hypothesis, it follows that
there exists u ∈ L(A0, q) such that u −−−−→

∗

R/A
t′. Moreover, t′ = t[a(s1 . . . sm)] −−−−→

R/A

t[ ] = t, and hence u −−−−→
∗

R/A
t. 2

Lemma 6. L(A′) ⊇ post∗R/A(L).

Proof. We show that for all u ∈ L, if u −−−−→∗

R/A
t, then u ∈ L(A′), by induction

on the length of the rewrite sequence.

Base case (0 rewrite steps). In this case, u = t ∈ L and we are done since
L = L(AL) ⊆ L(A′) by construction.

Induction step. Assume that t −−−−→
+

R/A
u with t ∈ L. We analyse the type of

rewrite rule used in the last rewrite step.

REN. The last rewrite step involves a rewrite rule a(x) → b(x) ∈ R/A:

u −−−−→
∗

R/A
t[a(h)] −−−−→

R/A
t[b(h)] = t.

By induction hypothesis, t[a(h)] ∈ L(A′). Hence there exists a reduction se-
quence:

t[a(h)] −−→
∗

A′ t[a(q1 . . . qn)] −−→A′ t[q0] −−→
∗

A′ qf ∈ Qf
L
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with q1 . . . qn ∈ L(Bk,a,q0), i.e. ia,q0 −−−−−→
q1...qn
Bk,a,q0

fa,q0 (remember that k is the

last construction step - fixpoint of the construction). By construction, the ε-
transitions ib,q0 −→

ε
ia,q0 and fa,q0 −→

ε
fb,q0 have been added to the automaton

Bk,a,q0 , at some construction step i ≤ k. Hence ib,q0 −−−−−→
q1...qn
Bk,b,q0

fb,q0 and q1 . . . qn ∈

L(Bk,b,q0). Therefore there exists a reduction sequence:

t = t[b(h)] −−→
∗

A′ t[b(q1 . . . qn)] −−→A′ t[q0] −−→
∗

A′ qf ∈ Qf
L

and t ∈ L(A′).

INSfirst. The last rewrite step involves a rewrite rule a(x) → a(p x) ∈ R/A, with
p ∈ P :

u −−−−→∗

R/A
t[a(h)] −−−−→

R/A
t[a(tp h)] = t

with tp ∈ L(A, p). By induction hypothesis, t[a(h)] ∈ L(A′). Hence there exists
a reduction sequence:

t[a(h)] −−→
∗

A′ t[a(q1 . . . qn)] −−→A′ t[q0] −−→
∗

A′ qf ∈ Qf
L

with q1 . . . qn ∈ L(Bk,a,q0), i.e. ia,q0 −−−−−→
q1...qn
Bk,a,q0

fa,q0 . By construction, the transi-

tion ia,q0 −→
p

ia,q0 has been added to Bk,a,q0 . Hence ia,q0 −−−−−→
p

Bk,a,q0

ia,q0 −−−−−→
q1...qn
Bk,a,q0

fb,q0 , i.e. p q1 . . . qn ∈ L(Bk,a,q0) and there exists a reduction sequence

t = t[a(tp h)] −−→
∗

A′ t[a(p q1 . . . qn)] −−→A′ t[q0] −−→
∗

A′ qf ∈ Qf
L.

It follows that t ∈ L(A′).

INSlast. The case where the last rewrite step involves a rewrite rule a(x) →
a(x p) ∈ R/A, with p ∈ P , is similar to the previous one.

INSinto. The last rewrite step involves a rewrite rule a(xy) → a(x p y) ∈ R/A,
with p ∈ P :

u −−−−→
∗

R/A
t[a(h ℓ)] −−−−→

R/A
t[a(h tp ℓ)] = t

with tp ∈ L(A, p). By induction hypothesis, t[a(h ℓ)] ∈ L(A′). Hence there
exists a reduction sequence:

t[a(h ℓ)] −−→
∗

A′ t[a(q1 . . . qn q
′
1 . . . q

′
m)] −−→

A′ t[q0] −−→
∗

A′ qf ∈ Qf
L

with q1 . . . qn q
′
1 . . . q

′
m ∈ L(Bk,a,q0), i.e. ia,q0 −−−−−→q1...qn

Bk,a,q0

s −−−−−→q′1...q
′

m

Bk,a,q0

fa,q0 for some

state s ∈ S. By construction, the looping transition s −→
p

s has been added to

Γi+1 at some step i ≤ k. Hence ia,q0 −−−−−→
q1...qn
Bk,a,q0

s −−−−−→
p

Bk,a,q0

s −−−−−→
q′1...q

′

m

Bk,a,q0

fa,q0 , i.e.

q1 . . . qn p q
′
1 . . . q

′
m ∈ L(Bk,a,q0) and we have

t = t[a(h tp ℓ)] −−→
∗

A′ t[a(q1 . . . qn p q
′
1 . . . q

′
m)] −−→

A′ t[q0] −−→
∗

A′ qf ∈ Qf
L.

It follows that t ∈ L(A′).

RPL1. The last rewrite step of the sequence involves a rewrite rule of the form
a(x) → p ∈ R/A, with p ∈ P :

u −−−−→
∗

R/A
t[a(h)] −−−−→

R/A
t[tp] = t
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with tp ∈ L(A, p). By induction hypothesis, t[a(h)] ∈ L(A′). Hence there exists
a reduction sequence:

t[a(h)] −−→
∗

A′ t[a(q1 . . . qn)] −−→A′ t[q0] −−→
∗

A′ qf ∈ Qf
L.

Hence q1 . . . qn ∈ L(Bk,a,q0) and L(Ai, qj) 6= ∅ for 1 ≤ j ≤ n. It follows that an
ε-transition p −→

ε
q0 has been added to A′, and there exists a reduction sequence

t = t[tp] −−→
∗

A′ t[p] −−→
ε

A′ t[q0] −−→
∗

A′ qf ∈ Qf
L.

Hence t ∈ L(A′).

DEL. The last rewrite step of the sequence involves a rewrite rule of the form
a(x) → () ∈ R/A:

u −−−−→
∗

R/A
t[a(h)] −−−−→

R/A
t.

By induction hypothesis, t[a(h)] ∈ L(A′). Hence there exists a reduction se-
quence:

t[a(h)] −−→
∗

A′ t[a(q1 . . . qn)] −−→A′ t[q0] −−→
∗

A′ qf ∈ Qf
L.

It follows that q1 . . . qn ∈ L(Bk,a,q0) and L(Ai, qj) 6= ∅ for 1 ≤ j ≤ n. Hence,

a δ-transition () −→
δ

q0 has been added to A′, and there exists a reduction
sequence

t = t[()] −−→
A′ t[q0] −−→

∗

A′ qf ∈ Qf
L,

hence t ∈ L(A′). 2

B. Proof of Theorem 2

We prove here the correctness of the CF-HA construction presented in Sec-
tion 4.2, i.e. we show that L(A′) = post∗R/A(L) holds, when A′ is the HA with
collapsing and cl -transitions constructed in the proof of Theorem 2, given a
PTRS R/A ∈ UFO and a HA AL recognizing the language L. It follows that
post∗R/A(L) is a CF-HA language by Lemmas 2 and 4.

Lemma 7. L(A′) ⊆ post∗R/A(L).

Proof. We show more generally that for all q ∈ Q0 and all hedge h such that
h −−→

∗

A′ q, there exists a term u ∈ L(A0, q) = L(AL, q) such that u −−−−→
∗

R/A
h.

As in the case of Lemma 5 (Theorem 1), the proof works by induction on the
multiset M of the indexes of the transitions rules rules of A′ involved in the
reduction h −−→

∗

A′ q.
The base case is identical as for Lemma 5. For the induction step, we assume

that the reduction h −−→
∗

A′ q has a measure M, and that it applies a transition
rule r ∈ ∆i+1 \∆i, of index i+ 1 > 0. We analyze the case that permitted the
construction of this rule r.

The cases of rewrite rules of type REN, INSfirst, INSlast, INSinto, and DEL are
treated similarly as in the proof of Lemma 5. The only little difference is that,
because of the collapsing (and cl) transitions, an hedge of length larger than 1
can be recognized by A′ in a single state. Hence every hypothesis t −−→

∗

A′ q, for

some term t, in the proof of Lemma 5 must be generalized to h −−→
∗

A′ q, for some
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hedge h. Let us detail the changes for the cases REN and INSfirst below. The
cases INSlast, INSinto are treated similarly.

REN. Assume that r = b
(

L(Bi+1,b,q0)
)

→ q0 and that the application of this
rule in the reduction h −−→

∗

A′ q involves an ε-transition ib,q0 −→
ε

ia,q0 of Bi+1,b,q0 ,
which has been added to Γi+1 because a(x) → b(x) ∈ R/A. The above reduction
h −−→

∗

A′ q has the form

h = h[b(h0)] −−→
∗

A′ h[b(q1 . . . qn)] −→r h[q0] −−→
∗

A′ q

such that the above ε-transition is involved in the step h[b(q1 . . . qn)] −→r h[q0],

where the the transition r = b
(

L(Bi+1,b,q0)
)

→ q0 is applied. Hence q1 . . . qn ∈
L(Bi+1,b,q0), with ib,q −−−−−−→

q1...qn
Bi+1,b,q0

fb,q0 , and the first step in this computation is

ib,q0 −→
ε

ia,q0 . The last step must be fa,q0 −→
ε

fb,q0 , using an ε-transition added

to Γi+1 in the same step as ib,q0 −→ε ia,q0 . By removing these first and last steps,

we obtain ia,q0 −−−−−→
q1...qn
Bi,a,q0

fa,q0 , hence q1 . . . qn ∈ L(Bi,a,q0). Therefore, we have a

reduction
h′ = h[a(h0)] −−→

∗

A′ h[a(q1 . . . qn)] −−→Ai

h[q0] −−→
∗

A′ q.

with a measure M′ strictly smaller than M. By induction hypothesis, it follows
that there exists u ∈ L(A0, q) such that u −−−−→

∗

R/A
h′. Since h′ = t[a(h0)] −−−−→R/A

h[b(h0)] = h, with a(x) → b(x), we conclude that u −−−−→
∗

R/A
t.

INSfirst. Assume that r = a
(

L(Bi+1,a,q0)
)

→ q0 and that the application of this
rule in the reduction h −−→

∗

A′ q involves a transition ia,q0 −→
p

ia,q0 which has been

added to Γi+1 because a(x) → a(p x) ∈ R/A. The above reduction of h −−→
∗

A′ q
has the form

h = h[a(hp h0)] −−→
∗

A′ h[a(p q1 . . . qn)] −→r h[q0] −−→
∗

A′ q

where the hedges hp and h0 are such that hp −−→
∗

A′ p and h0 −−→
∗

A′ q1 . . . qn, and the

transition ia,q0 −→
p

ia,q0 ∈ Γi+1\Γi is involved in the step t[a(p q1 . . . qn)] −→r t[q0],
where the the transition r is applied. It means that p q1 . . . qn ∈ L(Bi+1,a,q0),
with ia,q0 −−−−−−→

p q1...qn
Bi+1,a,q0

fa,q0 , and the first step in this computation is ia,q0 −→
p

ia,q0 .

By deleting this first step, we obtain the derivation ia,q0 −−−−−→
q1...qn
Bi,a,q0

fa,q0 , and hence

q1 . . . qn ∈ L(Bi,a,q0). Therefore, we have a reduction

h′ = h[a(h0)] −−→
∗

A′ t[a(q1 . . . qn)] −−→A′ t[q0] −−→
∗

A′ q

with a measure M′ strictly smaller than M. By induction hypothesis, it follows
that there exists u ∈ L(A0, q) such that u −−→

∗

R
h′.

Moreover, the measure of the sub-reduction hp −−→
∗

A′ p is strictly smaller than
M. Hence by induction hypothesis, there exists up ∈ L(A0, p) = L(A, p) such
that up −−−−→

∗

R/A
hp, and we have

h′ = h[a(h0)] −−−−→R/A
h[a(up h0)] −−−−→

∗

R/A
h[a(hp h0)] = h

(the first step uses a(x) → a(p x)). We conclude that u −−→
∗

R
h.
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The cases RPL1 and DEL are subcases of RPL. Let us now detail the four
remaining cases, INSbefore, INSafter, RPL, DELs, altogether.

Assume that r = P ∗
1

(

a(L(Bi,a,q0)) | P3 | P4

)

P ∗
2 → q0 and that this cl -transition

has been added to Ci+1 because one of the sets P1, P2, P3, P4 is not empty and
Bi,a,q0 is inhabited. In this case, the reduction h −−→

∗

A′ q can have one of the
following 3 forms

h = h[h1 a(h0)h2] −−→
∗

A′ h[w1 a(q1 . . . qn)w2] −→r h[q0] −−→
∗

A′ q (INSbefore/after)

when P1∪P2 6= ∅, w1 ∈ P ∗
1 and w2 ∈ P ∗

2 are sequences of states ofA, h1 −−→
∗

A′ w1,

h2 −−→
∗

A′ w2, h0 −−→
∗

A′ q1 . . . qn, and q1 . . . qn ∈ L(Bi,a,q0).

h = h[h1h0h2] −−→
∗

A′ h[w1 p1 . . . pnw2] −→r h[q0] −−→
∗

A′ q (RPL)

where w1, w2, h1, h2 are as above, p1 . . . pn ∈ P3 because a(x) → p1 . . . pn ∈
R/A and the hedge h0 contains some subhedges h0,j ∈ L(A′, pj) for 1 ≤ j ≤ n.

h = h[h1h0h2] −−→
∗

A′ h[w1 q1 . . . qnw2] −→r h[q0] −−→
∗

A′ q (DELs)

where w1, w2, h1, h2 are as above, a(x) → x ∈ R/A, q1 . . . qn ∈ L(Bi,a,q0) = P4,
and h0 −−→

∗

A′ q1 . . . qn.

Now, we analyze the three above cases.

(INSbefore/after). By construction, A′ contains a transition a
(

L(Bi,a,q0)
)

→ q0,
and hence we have

h′ = h[a(h0)] −−→
∗

A′ h[a(q1 . . . qn)] −−→Ai

h[q0] −−→
∗

A′ q

with a measure strictly smaller than M. By induction hypothesis, it follows
that there exists u ∈ L(A0, q) such that u −−→

∗

R
h′.

Moreover, for all state p occurring in w1 there exists a subhedge hp of h1

such that hp −−→
∗

A′ p, and this reduction is a sub-reduction of h1 −−→
∗

A′ w1 with a
measure strictly smaller than M. Hence by induction hypothesis, there exists
a term up ∈ L(A0, p) such that up −−−−→

∗

R/A
hp. The situation is similar for

h2 and w2, and altogether, we have two hedges h′
1, h

′
2 such that h′

1 −−→
∗

A0

w1,

h′
2 −−→

∗

A0

w2, and h′
1 −−−−→

∗

R/A
h1, h

′
2 −−−−→

∗

R/A
h2. Therefore, we have the following

rewrite sequence

h′ = h[a(h0)] −−−−→R/A
h[h′

1 a(h0)h
′
2] −−−−→

∗

R/A
h[h1 a(h0)h2] = h

(the first step involves the rewrite rules of type INSbefore and INSafter used in the
definition of P1 and P2), and we can conclude that u −−−−→

∗

R/A
h.

(RPL). The measure of each sub-reduction h0,j −−→
∗

A′ pj is strictly smaller
than M for all 1 ≤ j ≤ n, hence by induction hypothesis, there exists uj ∈
L(A0, pj) = L(A, pj) such that uj −−−−→

∗

R/A
h0,j .

Moreover, by hypothesis, Bi,a,q0 is inhabited, hence there exists q1 . . . qm ∈
L(Bi,a,q0) (m ≥ 0), and some hedge h′

0 such that h′
0 −−→

∗

Ai
q1 . . . qm. Hence there

exists a reduction

h′ = h[a(h′
0)] −−→

∗

Ai

h[a(q1 . . . qm)] −−→
∗

Ai

h[q0] −−→
∗

A′ q
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and its measure is strictly smaller than M, because the index of every transition
rule of Ai is strictly smaller that the index of r, which is i + 1. By induction
hypothesis, it follows that there exists u ∈ L(A0, q) such that u −−−−→

∗

R/A
h′.

Finally, it holds that

h′ = h[a(h′
0)] −−−−→

∗

R/A
h[h′

1a(h
′
0)h

′
2] −−−−→R/A

h[h′
1u1 . . . unh

′
2] −−−−→

∗

R/A
h[h1h0h2] = h

where h′
1 and h′

2 are as above (the second rewrite step applies the rule a(x) →
p1 . . . pn), and hence u −−−−→

∗

R/A
h.

(DELs). There exists a reduction

h′ = h[a(h0)] −−→
∗

A′ h[a(q1 . . . qn)] −−→Ai

h[q0] −−→
∗

A′ q

and its measure is strictly smaller than M, because the index of the transition
rule a

(

L(Bi,a,q0)
)

→ q0 is i and the index of r is i + 1. Hence, by induction
hypothesis, there exists u ∈ L(A0, q) such that u −−−−→

∗

R/A
h′. Moreover, we have

the following rewrite sequence

h′ = h[a(h0)] −−−−→
∗

R/A
h[h′

1 a(h0)h
′
2] −−−−→

∗

R/A
h[h1 a(h0)h2] −−−−→R/A

h[h1h0h2] = h

where h′
1 and h′

2 are as above and the rewrite rule a(x) → x is used, and hence
u −−−−→

∗

R/A
h. 2

Lemma 8. L(A′) ⊇ post∗R/A(L).

Proof. We show that for all term u ∈ L, if u −−−−→
∗

R/A
t, then t ∈ L(A′), by

induction on the length of the rewrite sequence.

Base case (0 rewrite steps). In this case, u = t ∈ L, and we are done since
L = L(AL) ⊆ L(A′).

Induction step (k + 1 rewrite steps). We analyse the type of rewrite rule used
in the last rewrite step of u −−−−→

∗

R/A
t. The cases of rules REN, INSfirst, INSlast,

INSinto are nearly identical as in the proof of Lemma 6 (Theorem 1). We just
detail the two first cases, REN, INSfirst, and continue with the other rules.

REN. The last rewrite step of the sequence involves a rewrite rule a(x) → b(x) ∈
R/A:

u −−−−→
∗

R/A
t[a(h)] −−−−→

R/A
t[b(h)] = t.

By induction hypothesis, t[a(h)] ∈ L(A′). Hence there exists a reduction se-
quence:

t[a(h)] −−→
∗

A′ t′[a(q1 . . . qn)] −−→A′

(1)
t′′[q0] −−→

∗

A′ qf ∈ Qf
L

Note that t′ may be different from t′′, depending on the transition rule applied
in the middle reduction step, marked with (1), which made a disappear. There
are two cases:

(i) (1) applies a cl -transition r = P ∗
1

(

a(L(Bk,a,q0)) | P3 | P4

)

P ∗
2 → q0, with

p ∈ P1. In this case, we might have t′ 6= t′′, because the context t′ may
contain siblings of a(q1 . . . qn) which are states of P1 and P2 removed by
the application of r in (1) (hence they are not in t′′).
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(ii) (1) applies the transition a(L(Bk,a,q0)) → q0. In this case, t′ = t′′.

In both cases, it holds that q1 . . . qn ∈ L(Bk,a,q0), i.e. ia,q0 −−−−−→
q1...qn
Bk,a,q0

fa,q0 (re-

member that k is the last construction step - fixpoint of the construction).
We show that there exists a reduction sequence:

t = t[b(h)] −−→
∗

A′ t′[b(q1 . . . qn)] −−→A′

(2)
t′′′[q0] −−→

∗

A′ qf ∈ Qf
L

If we were in case (i), a cl -transition r = P ∗
1

(

b(L(Bk,b,q0)) | P3 | P4

)

P ∗
2 → q0

can be applied in (2) and t′′′ = t′′. This cl -transition exists because a� b.
If we were in case (ii), we can apply in (2) the transition b(L(Bk,b,q0)) → q0
(and t′′′ = t′). Indeed, by construction, the ε-transitions ib,q0 −→

ε
ia,q0 and

fa,q0 −→
ε

fb,q0 have been added to the automaton Bk,a,q0 , hence ib,q0 −−−−−→
q1...qn
Bk,b,q0

fb,q0

and q1 . . . qn ∈ L(Bk,b,q0). Altogether, t ∈ L(A′).

INSfirst. The last rewrite step of the sequence involves a rewrite rule a(x) →
a(p x) ∈ R/A, where p is a state of A.

u −−−−→
∗

R/A
t[a(h)] −−−−→

R/A
t[a(tp h)] = t

with tp ∈ L(A, p). By induction hypothesis, t[a(h)] ∈ L(A′). Hence there exists
a reduction sequence:

t[a(h)] −−→
∗

A′ t′[a(q1 . . . qn)] −−→A′

(1)
t′′[q0] −−→

∗

A′ qf ∈ Qf
L

with the same possibilities (i) and (ii) as above for (1) and with q1 . . . qn ∈
L(Bk,a,q0), i.e. ia,q0 −−−−−→

q1...qn
Bk,a,q0

fa,q0 . We show that there exists a reduction se-
quence

t = t[a(tp h)] −−→
∗

A′ t′[a(p q1 . . . qn)] −−→A′

(2)
t′′′[q0] −−→

∗

A′ qf ∈ Qf
L.

with a similar case analysis as above for (2). Indeed, by construction, the tran-
sition ia,q0 −→

p
ia,q0 has been added to Bk,a,q0 . Hence ia,q0 −−−−−→

p

Bk,a,q0

ia,q0 −−−−−→
q1...qn
Bk,a,q0

fb,q0 , i.e. p q1 . . . qn ∈ L(Bk,a,q0). In conclusion t ∈ L(A′).

INSbefore. The last rewrite step of the sequence involves a rewrite rule a(x) →
p a(x) ∈ R/A, where p is a state of A.

u −−−−→
∗

R/A
t[a(h)] −−−−→

R/A
t[tp a(h)] = t.

with tp ∈ L(A, p). By induction hypothesis, t[a(h)] ∈ L(A′), hence there exists
a reduction sequence:

t[a(h)] −−→∗
A′ t′[a(q1 . . . qn)] −−→A′

(1)
t′′[q0] −−→

∗

A′ qf ∈ Qf
L

The reduction in the middle, marked with (1), can either involve

(i) a cl -transition r = P ∗
1

(

a(L(Bi,a,q0)) | P3 | P4

)

P ∗
2 → q0, with p ∈ P1. In

this case, t′ 6= t′′ because a left sibling p of a(q1 . . . qn) is part of t′ and
removed from t′′ by the application of r, or

(ii) the transition a(L(Bk,a,q0)) → q0 (in this case, t′ = t′′).
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In both cases, q1 . . . qn ∈ L(Bk,a,q0) and

t = t[tp a(h)] −−→
∗

A′ t′[p a(q1 . . . qn)] −−→A′

(2)
t′′′[q0] −−→

∗

A′ qf ∈ Qf
L

In the above case (i), the middle rule (2) also involves the cl -transition r, because
p ∈ P1. In the case (ii), we can apply r instead of a(L(Bk,a,q0)) → q0, and
t′′′ = t′. In both cases, we can apply the rest of the reduction t′′′[q0] −−→

∗

A′ qf ∈ Qf
L

and t ∈ L(A′).

INSafter. This case is similar to the above one.

RPL. The last rewrite step of the sequence involves a rewrite rule a(x) →
p1 . . . pn ∈ R/A, where p1, . . . , pn are states of A.

u −−−−→
∗

R/A
t[a(h)] −−−−→

R/A
t[t1 . . . tn] = t.

with ti ∈ L(A, pi) for all i ≤ n. By induction hypothesis, t[a(h)] ∈ L(A′), hence
there exists a reduction sequence:

t[a(h)] −−→
∗

A′ t′[a(q1 . . . qn)] −−→A′

(1)
t′′[q0] −−→

∗

A′ qf ∈ Qf
L

The reduction (1) as above can involves either (i) a cl -transition r = P ∗
1

(

a(L(Bi,a,q0)) |

P3 | P4

)

P ∗
2 → q0 - it exists because p1 . . . pn ∈ P3 (in this case t′ 6= t′′), or

(ii) the transition a(L(Bk,a,q0)) → q0 (and t′ = t′′). In both cases q1 . . . qn ∈
L(Bk,a,q0), and

t = t[t1 . . . tn] −−→
∗

A′ t′[p1 . . . pn] −−→A′

(2)
t′′′[q0] −−→

∗

A′ qf ∈ Qf
L

The middle step (2), in both cases (i) and (ii), applies the cl -transition r.
We conclude that t ∈ L(A′).

DEL. It is a particular case of RPL, with n = 0.

DELs. The last rewrite step of the sequence involves a rewrite rule a(x) → x ∈
R/A:

u −−−−→
∗

R/A
t[a(h)] −−−−→

R/A
t[h] = t.

By induction hypothesis, u[a(h)] ∈ L(A′), hence there exists a reduction se-
quence:

t[a(h)] −−→
∗

A′ t′[a(q1 . . . qn)] −−→A′

(1)
t′′[q0] −−→

∗

A′ qf ∈ Qf
L

with the same two possibilities for the step (1) as in the above cases, with
q1 . . . qn ∈ L(Bk,a,q0). As A′ contains, by construction, a cl -transition r =
P ∗
1

(

a(L(Bi,a,q0)) | P3 | P4

)

P ∗
2 → q0, with P4 = L(Bk,a,q0), we can show, by the

similar case analysis as above, that

t = t[h] −−→
∗

A′ t′[q1 . . . qn] −−→A′ t′′′[q0] −−→
∗

A′ qf ∈ Qf
L

and hence t ∈ L(A′). 2
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C. Proof of Theorem 3

We show in this section the correctness of the automata construction pre-
sented in Section 4.3: for the HA A′ constructed in the proof of Theorem 3,
given a PTRS R/A ∈ UFO and a HA AL recognizing a language L, it holds
that L(A′) = pre∗R/A(L).

Lemma 9. L(A′) ⊆ pre∗R/A(L).

Proof. We show more generally that for all t ∈ L(A′, q), q ∈ QL, there exists
u ∈ L(AL, q) such that t −−−−→

∗

R/A
u. The proof is by induction on the measure

M associating to a reduction t −−→
∗

A′ q the multiset of indexes of transition rules
of A′ involved in the reduction, where the index of the transition rule r of A′ is
0 if r ∈ ∆0 or the smallest i > 0 such that r ∈ ∆i and r /∈ ∆i−1.

Base case. If all the indexes in M are 0, then all the transition involved are in
∆0. It means that t ∈ L(AL, q) and we let u = t.

Induction step. Assume that the reduction t −−→
∗

A′ q has a measure M and has
the following form

t = t[a(h)] −−→
∗

A′ t[a(q1 . . . qn)] −→r t[q0] −−→
∗

A′ q (C.1)

and that the middle step t[a(q1 . . . qn)] −→r t[q0] applies a transition rule r =
a(B) → q0 (q1 . . . qn ∈ L(B)) added to ∆i+1 for some i ≥ 0. We analyse the
cases which permitted the addition of this transition rule r to ∆i+1.

REN: if the transition r = a(B) → q0 was added to ∆i+1 because a(x) → b(x) ∈
R/A and b(B) →֒∆i

q0, then there exists a reduction

t′ = t[b(h)] −−→
∗

A′ t[b(q1 . . . qn)] −−→Ai

t[q0] −−→
∗

A′ q

with a measure strictly smaller than M. Therefore, by induction hypothesis,
there exists u ∈ L(AL, q) such that t′ −−−−→

∗

R/A
u. Since t = t[a(h)] −−−−→

R/A
t[b(h)] =

t′, we conclude that t −−−−→
∗

R/A
u.

INSfirst: Assume that the transition r = a(B) → q0 was added to ∆i+1 because
a(x) → a(p x) ∈ R/A, q0, qp ∈ QL, L(Ai, qp)∩L(A, p) 6= ∅ and a(qp B) →֒∆i

q0.
Then there is a reduction

t′ = t[a(tp h)] −−→
∗

A′ t[a(qp q1 . . . qn)] −−→Ai

t[q0] −−→
∗

A′ q

for some tp ∈ L(Ai, qp) ∩ L(A, p), with a measure strictly smaller than M.
Therefore, by induction hypothesis, there exists u ∈ L(AL, q) such that t′ −−−−→

∗

R/A

u. Since t = t[a(h)] −−−−→
R/A

t[a(tp h)] = t′, we conclude that t −−−−→∗

R/A
u.

RNSlast: this case is similar to the previous one.

INSinto: Assume that the transition r = a(B) → q0 has been added to ∆i+1

because a(xy) → a(x p y) ∈ R/A, there is B′ ∈ C, s, s′ states of B′, q0, qp ∈ Q0,
such that L(Ai, qp)∩L(A, p) 6= ∅, s −−→

qp
B′ s′, a(B′) →֒∆i

q0 and B = B′+s −→
ε

s′.
In this case, let t = a(h ℓ), and let reduction (C.1) have the form

t = t[a(h ℓ)] −−→
∗

A′ t[a(q1 . . . qn q
′
1 . . . q

′
m)] −→

r
t[q0] −−→

∗

A′ q
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with q1 . . . qn q
′
1 . . . q

′
m ∈ L(B) by iB −−−−−→

B′

q1...qn s −→
ε

B
s′ −−−−−→

B′

q′1...q
′

m fB (remember that
iB and fB are resp. the initial and final states of B). Hence, by construction, we

have iB′ −−−−−→
B

q1...qn s −−→
B

qp s′ −−−−−→
B′

q′1...q
′

m fB′ (iB′ = iB and fB′ = fB) and there exists a
reduction

t′ = t[b(h tp ℓ)] −−→
∗

A′ t[b(q1 . . . qn qp q
′
1 . . . q

′
m)] −−→

Ai

t[q0] −−→
∗

A′ q

for some tp ∈ L(Ai, qp) ∩ L(A, p), with a measure strictly smaller than M.
Therefore, by induction hypothesis, there exists u ∈ L(AL, q) such that t′ −−−−→

∗

R/A

u. Since t = t[a(h ℓ)] −−−−→
R/A

t[b(h tp ℓ)] = t′, we conclude that t −−−−→
∗

R/A
u.

From now on we assume that the reduction t −−→
∗

A′ q has the form

t = t[b(h)] −−→
∗

A′ t[b(q1 . . . qn)] −→r t[q0] −−→
∗

A′ q (C.2)

with r = b(B) → q0 (q1 . . . qn ∈ L(B)), which was added to ∆i+1 for some i ≥ 0.
in one of the five following cases.

INSbefore: Assume that the transition r = b(B) → q0 has been added to ∆i+1

because a(x) → p a(x) ∈ R/A, there is B′,B′′ ∈ C, s, s′ are states of B′,
q0, qp, q

′
0 ∈ Q0, such that b(B′) → q0 ∈ ∆i, a(B

′′) →֒∆i
q′0, L(Ai, qp)∩L(A, p) 6=

∅, s −−−−→
B′

qp q′0 s′, and B = B′ + s −−→
q′0 s′.

In this case, let t = b(h a(v)ℓ), and let the above reduction (C.2) have the form

t = t[b(h a(v)ℓ)] −−→
∗

A′ t[b(q1 . . . qn q
′
0 q

′
1 . . . q

′
m)] −→

r
t[q0] −−→

∗

A′ q

with q1 . . . qn q
′
0 q

′
1 . . . q

′
m ∈ L(B) by iB′ −−−−−→

B′

q1...qn s −−→
B

q′0 s′ −−−−−→
B′

q′1...q
′

m fB′ . Hence, by

construction, we have iB′ −−−−−→
B′

q1...qn s −−−−→
B

qp q′0 s′ −−−−−→
B′

q′1...q
′

m fB′ (iB = iB′ and fB = fB′)
and there exists a reduction

t′ = t[b(h tp a(v) ℓ)] −−→
∗

A′ t[b(q1 . . . qn qp q
′
0q

′
1 . . . q

′
m)] −−→

A′ t[q0] −−→
∗

A′ q

for some tp ∈ L(Ai, qp) ∩ L(A, p), with a measure strictly smaller than M.
Therefore, by induction hypothesis, there exists u ∈ L(AL, q) such that t′ −−−−→

∗

R/A

u. Since t = t[b(h a(v)ℓ)] −−−−→
R/A

t[b(h tp a(v)ℓ)] = t′, we conclude that t −−−−→
∗

R/A
u.

INSafter: this case is similar to the previous one.

RPL: Assume that the transition r = b(B) → q0 has been added to ∆i+1

because a(x) → p1 . . . pn ∈ R/A, there is B′,B′′ ∈ C, s, s′ are states of B′,
q0, q

′
0, q1, . . . , qn ∈ Q0, such that b(B′) → q0 ∈ ∆i, a(B′′) →֒∆i

q′0, L(Ai, qj) ∩

L(A, pj) 6= ∅ for all j ≤ n, s −−−−−→
B′

q1...qn s′, and B = B′ + s −−→
q′0 s′.

In this case, let t = b(ha(v) ℓ), and let the above reduction (C.2) have the form

t = t[b(h a(v) ℓ)] −−→
∗

A′ t[b(q′1 . . . q
′
k q

′
0 q

′
k+1 . . . q

′
m)] −→

r
t[q0] −−→

∗

A′ q

with q′1 . . . q
′
k q

′
0 q

′
k+1 . . . q

′
m ∈ L(B) by iB′ −−−−−→

B′

q′1...q
′

k s −−→
B

q′0 s′ −−−−−−−→
B′

q′k+1...q
′

m fB′ . Hence,

by construction, we have iB′ −−−−−→
B′

q′1...q
′

k s −−−−−→
B′

q1...qn s′ −−−−−−−→
B′

q′k+1...q
′

m fB′ (iB = iB′ and
fB = fB′ ) and there exists a reduction

t′ = t[b(h t1 . . . tn ℓ)] −−→
∗

A′ t[b(q′1 . . . q
′
k q1 . . . qn q

′
k+1 . . . q

′
m)] −−→

Ai

t[q0] −−→
∗

A′ q
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where for all j ≤ n, tj ∈ L(Ai, qj) ∩ L(A, pj), with a measure strictly smaller
than M. Therefore, by induction hypothesis, there exists u ∈ L(AL, q) such
that t′ −−−−→

∗

R/A
u. Since t = t[a(h a(v)ℓ)] −−−−→

R/A
t[b(h t1 . . . tn ℓ)] = t′, using the

rule a(x) → p1 . . . pn, we can conclude that t −−−−→
∗

R/A
u.

DEL: this case is a particular case of RPL with n = 0.

DELs: Assume that the transition r = b(B) → q0 has been added to ∆i+1

because a(x) → x ∈ R/A, there is B′ ∈ C, s, s′ are states of B′, such that
b(B′) → q0 ∈ ∆i, and B = B′ + s −−−−→

qa,s,s′ s′.
In this case, let t = b(ha(v)ℓ), and let the above reduction (C.2) have the form

t = t[b(h a(v)ℓ)] −−→
∗

A′ t[b(q1 . . . qm a(v1 . . . vk) q
′
1 . . . q

′
m′)]

−−−−→
∗

Ai+1

t[b(q1 . . . qm qa,s,s′ q
′
1 . . . q

′
m′)] −→

r
t[q0] −−→

∗

A′ q

with v1 . . . vk ∈ L(B′
s,s′) by s −−−−−→

B′

v1...vk s′, and q1 . . . qm qa,s,s′ q
′
1 . . . q

′
m′ ∈ L(B) by

iB′ −−−−−→
B′

q1...qm s −−−−→
B

qa,s,s′ s′ −−−−−→
B′

q′1...q
′

m′ fB′ .

Hence, we have iB′ −−−−−→
B′

q1...qm s −−−−−→
B′

v1...vk s′ −−−−−→
B′

q′1...q
′

m′ fB′ (iB = iB′ and fB = fB′)
and there exists a reduction

t′ = t[b(h v ℓ)] −−→
∗

A′ t[b(q1 . . . qm v1 . . . vk q
′
1 . . . q

′
m′)] −−→

A′ t[q0] −−→
∗

A′ q

with a measure strictly smaller than M. Therefore, by induction hypothesis,
there exists u ∈ L(AL, q) such that t′ −−−−→

∗

R/A
u. Since t = t[a(h a(v)ℓ)] −−−−→

R/A

t[b(h v ℓ)] = t′, we conclude that t −−−−→
∗

R/A
u. 2

Lemma 10. L(A′) ⊇ pre∗R/A(L).

Proof. We show that for all t ∈ L, if u −−−−→∗

R/A
t, then u ∈ L(A′), by induction

on the length of the rewrite sequence.

Base case (0 rewrite steps). In this case, u = t ∈ L and we are done since
L = L(AL) ⊆ L(A′) by construction.

Induction step. Assume that u −−−−→
+

R/A
t, we analyse the type of the rewrite rule

used in the first rewrite step.

REN. Assume that the above rewrite sequence is

u = u[a(h)] −−−−→
R/A

u[b(h)] −−−−→
∗

R/A
t.

By induction hypothesis, u[b(h)] ∈ L(A′), i.e. there exists a reduction sequence

u[b(h)] −−→
∗

A′ u[b(q1 . . . qn)] −−→A′

(1)
u[q] −−→

∗

A′ qf

where q, q1, . . . , qn ∈ Q0, q
f ∈ Qf

0. Let b(B) → q be the transition involved at the
above step (1), because q1 . . . qn ∈ B. By construction, a transition a(B) → q
has been added to A′. It follows that

u = u[a(h)] −−→
∗

A′ u[a(q1 . . . qn)] −−→A′ u[q] −−→
∗

A′ qf ,

hence that u ∈ L(A′).
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INSfirst. Assume that the above rewrite sequence is

u = u[a(h)] −−−−→
R/A

u[a(tp h)] −−−−→
∗

R/A
t

for some tp ∈ L(A, p). By induction hypothesis, u[a(tp h)] ∈ L(A′), i.e. there
exists a reduction sequence

u[a(tp h)] −−→
∗

A′ u[a(qp q1 . . . qn)] −−→A′

(1)
u[q0] −−→

∗

A′ qf

where q0, qp, q1, . . . , qn ∈ Q0 and qf ∈ Qf
0. Hence L(A′, qp) ∩ L(A, p) is not

empty because it contains tp. Let a(B) → q be the transition applied at step
(1). We have qp q1 . . . qn ∈ L(B), hence B contains a transition iB −−→

qp s for
some state s of B. It holds that q1, . . . , qn ∈ L(Bs,fB) and qp L(Bs,fB) ⊆ L(B),
hence a(qp Bs,fB) →֒∆k

q0. It follows that the transition a(Bs,fB) → q0 has been
added to A′, and it permits the reduction

u = u[a(h)] −−→
∗

A′ u[a(q1 . . . qn)] −−→A′ u[q0] −−→
∗

A′ qf ,

hence u ∈ L(A′).

INSlast. This case is similar to the previous one.

INSinto. Assume that the above rewrite sequence is

u = u[a(h ℓ)] −−−−→
R/A

u[a(h tp ℓ)] −−−−→
∗

R/A
t

for some tp ∈ L(A, p). By induction hypothesis, u[a(h tp ℓ)] ∈ L(A′), i.e. there
exists a reduction sequence

u[a(h tp ℓ)] −−→
∗

A′ u[a(q1 . . . qm qp q
′
1 . . . q

′
n)] −−→A′

(1)
u[q] −−→

∗

A′ qf

where q, qp, q1, . . . , qm, q′1, . . . , q
′
n ∈ Q0 and qf ∈ Qf

0. Hence L(A′, qp) ∩ L(A, p)
is not empty because it contains tp, and the transition rule applied at the above
step (1) has the form a(B) → q, where q1 . . . qmqpq

′
1 . . . q

′
n ∈ L(B), by iB −−−−−→

B

q1...qm

s −−→
B

qp s′ −−−−−→
B

q′1...q
′

n fB for some states s, s′ of B. Therefore, a transition a(B+s −→
ε

s′) → q has been added to A′, and q1 . . . qmq′1 . . . q
′
n ∈ L(B+ s −→

ε
s′). It follows

that
u = u[a(hℓ)] −−→

∗

A′ u[a(q1 . . . qmq′1 . . . q
′
n)] −−→A′ u[q] −−→

∗

A′ qf ,

hence that u ∈ L(A′).

INSbefore. Assume that the above rewrite sequence is

u = u[b(h a(v) ℓ)] −−−−→
R/A

u[b(h tp a(v) ℓ)] −−−−→
∗

R/A
t

for some tp ∈ L(A, p). By induction hypothesis, u[b(h tp a(v)ℓ)] ∈ L(A′), i.e.
there exists a reduction sequence

u[b(h tp a(v)ℓ)] −−→
∗

A′ u[b(q1 . . . qm qp q
′q′1 . . . q

′
n)] −−→A′

(1)
u[q] −−→

∗

A′ qf

where q, q′, qp, q1, . . . , qm, q′1, . . . , q
′
n ∈ Q0, qf ∈ Qf

0, and a(v) −−→
∗

A′ q′. Hence
L(A′, qp) ∩ L(A, p) is not empty because it contains tp, and the transition rule
applied at step (1) has the form b(B) → q with B ∈ C and q1 . . . qmqp q

′ q′1 . . . q
′
n ∈
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L(B), with iB −−−−−→
B

q1...qm s −−−→
B

qpq
′

s′ −−−−−→
B

q′1...q
′

n fB, for some of states s and s′

of B. Hence, a transition b(B + s −−→
q′

s′) → q has been added to A′, and

q1 . . . qmq′q′1 . . . q
′
n ∈ L(B + s −−→

q′
s′). It follows that

u = u[b(ha(v)ℓ)] −−→∗
A′ u[a(q1 . . . qmq′q′1 . . . q

′
n)] −−→A′ u[q] −−→∗

A′ qf ,

hence that u ∈ L(A′).

INSafter. This case is similar to the previous one.

RPL. Assume that the above rewrite sequence is

u = u[b(h a(v) ℓ)] −−−−→
R/A

u[b(h t1 . . . tn ℓ)] −−−−→
∗

R/A
t

for some t1, . . . , tn respectively in L(A, p1), . . . , L(A, pn). By induction hypoth-
esis, u[b(ht1 . . . tnℓ)] ∈ L(A′), i.e. there exists a reduction sequence

u[b(h t1 . . . tn ℓ)] −−→
∗

A′ u[b(q′1 . . . q
′
k q1 . . . qn q′k+1 . . . q

′
m)] −−→ρ

A′ u[q] −−→∗
A′ qf

where q, q1, . . . , qn, q
′
1, . . . , q

′
m ∈ Q0, q

f ∈ Qf
0, and for all j ≤ n, L(A′, qpj

) ∩
L(A, pj) contains tj , and the transition rule applied at step (1) has the form

b(B) → q with q′1 . . . q
′
k q1 . . . qn q

′
k+1 . . . q

′
m ∈ L(B), by iB −−−−−→

B

q′1...q
′

k s −−−−−→
B

q1...qn

s′ −−−−−−−→
B

q′k+1...q
′

m fB, for some states s and s′ of B.

Let q′ ∈ Q0 be such that a(v) −−→
∗

A′ q′. By construction, a transition b(B +

s −−→
q′

s′) → q has been added to A′, and q′1 . . . q
′
k q

′ q′k+1 . . . q
′
m ∈ L(B+s −−→

q′
s′).

It follows that

u = u[b(ha(v)ℓ)] −−→
∗

A′ u[a(q′1 . . . q
′
k q

′ q′k+1 . . . q
′
m)] −−→

A′ u[q] −−→
∗

A′ qf ,

hence that u ∈ L(A′).

DEL. it is a particular case of RPL with n = 0.

DELs. Assume that the above rewrite sequence is

u = u[b(h a(v) ℓ)] −−−−→
R/A

u[b(h v ℓ)] −−−−→
∗

R/A
t.

By induction hypothesis, u[b(hvℓ)] ∈ L(A′), i.e. there is a reduction sequence

u[b(hvℓ)] −−→
∗

A′ u[b(q′1 . . . q
′
m q1 . . . qn q

′
k+1 . . . q

′
m)] −−→

A′

(1)
u[q] −−→

∗

A′ qf

where q, q′1, . . . , q
′
m, q1, . . . , qn ∈ Q0 and qf ∈ Qf

0.
The transition rule applied at step (1) has the form b(B) → q with B ∈ C

and q′1 . . . q
′
m q1 . . . qn q

′
k+1 . . . q

′
m ∈ L(B), with a sequence iB −−−−−→

B

q′1...q
′

m s −−−−−→
B

q1...qn

s′ −−−−−−−→
B

q′k+1...q
′

m fB, where s, s′ are two states of B.
By construction, a transition a(Bs,s′) → qa,s,s′ has been added to A′, and

we have a(v) −−→
∗

A′ a(q1 . . . qn) −−→
∗

A′ qa,s,s′ because q1 . . . qn ∈ L(Bs,s′).

Moreover, a transition b(B+ s −−−−→qa,s,s′ s) → q has been added to A′, and hence

u = u[b(h a(v) ℓ)] −−→
∗

A′ u[a(q′1 . . . q
′
k qa,s,s′ q

′
k+1 . . . q

′
m)] −−→

A′ u[q] −−→
∗

A′ qf ,

therefore u ∈ L(A′). 2
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