
Tree automata techniques
for the verification of infinite state-systems

Summer School VTSA 2011

Florent Jacquemard

INRIA Saclay & LSV (UMR CNRS/ENS Cachan)

florent.jacquemard@inria.fr

http://www.lsv.ens-cachan.fr/~jacquema

florent.jacquemard@inria.fr
http://www.lsv.ens-cachan.fr/~jacquema

TATA book http://tata.gforge.inria.fr

(chapters 1, 3, 7, 8)

Tree

Automata

Techniques and

Applications

Hubert Comon Max Dauchet Rémi Gilleron

Florent Jacquemard Denis Lugiez Christof Löding

Sophie Tison Marc Tommasi

http://tata.gforge.inria.fr

Finite tree automata

◮ tree recognizers

◮ generalize NFA from words to trees

= finite representations of infinite set of labeled trees

are a useful tool for verification procedures

◮ composition results
◮ closure under Boolean operations
◮ closure under transformations

◮ decision results, efficient algorithms

◮ expressiveness, close relationship with logic

Verification of infinite state systems
regular model checking : static analysis of safety properties for
infinite state systems, using symbolic reachability verification
techniques.

reachable
configurations

initial
configurations

erroneous
configurations

Concurrent readers/writers

Example from [Clavel et al. LNCS 4350 2007]

1. state(0, 0) = state(0, s(0))
2. state(r, 0) = state(s(r), 0)
3. state(r, s(w)) = state(r, w)
4. state(s(r), w) = state(r, w)

◮ writers can access the file if nobody else is accessing it (1)

◮ readers can access the file if no writer is accessing it (2)

◮ readers and writers can leave the file at any time (3,4)

Properties expected:

◮ mutual exclusion between readers and writers

◮ mutual exclusion between writers

Concurrent readers/writers: reachable configurations

1. state(0, 0) = state(0, s(0))
2. state(r, 0) = state(s(r), 0)
3. state(r, s(w)) = state(r, w)
4. state(s(r), w) = state(r, w)

Initial configuration: state(0, 0)

Concurrent readers/writers: reachable configurations

1. state(0, 0) = state(0, s(0))
2. state(r, 0) = state(s(r), 0)
3. state(r, s(w)) = state(r, w)
4. state(s(r), w) = state(r, w)

Reachable configura-
tions:

state(0, 0)

Concurrent readers/writers: reachable configurations

1. state(0, 0) = state(0, s(0))
2. state(r, 0) = state(s(r), 0)
3. state(r, s(w)) = state(r, w)
4. state(s(r), w) = state(r, w)

Reachable configura-
tions:

state(0, 0) state
(
0, s(0)

)

1

3

Concurrent readers/writers: reachable configurations

1. state(0, 0) = state(0, s(0))
2. state(r, 0) = state(s(r), 0)
3. state(r, s(w)) = state(r, w)
4. state(s(r), w) = state(r, w)

Reachable configura-
tions:

state(0, 0) state
(
0, s(0)

)

state
(
s(0), 0

)

state
(
s(s(0)), 0

)

...

1

32 4

2 4

Concurrent readers/writers: finite representation

state(0, 0) state
(
0, s(0)

)

state
(
s(0), 0

)

state
(
s(s(0)), 0

)

...

1

32 4

2 4

q0 := 0
q := state(q0, q0) | state(q0, q1) | state(q1, q0) | state(q2, q0)
q1 := s(q0)
q2 := s(q1) | s(q2)

Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0)

Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))
state(0, 0) ∈ q ⇒ state(0, s(0)) ∈ q

2. state(r, 0) = state(s(r), 0)

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0)

Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))
state(0, 0) ∈ q ⇒ state(0, s(0)) ∈ q

2. state(r, 0) = state(s(r), 0)

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0) | state(q0, q1)
q1 := s(q0)

Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)
state(q0, 0) ∈ q ⇒ state(s(q0), 0) ∈ q

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0) | state(q0, q1)
q1 := s(q0)

Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)
state(q0, 0) ∈ q ⇒ state(s(q0), 0) ∈ q

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0) | state(q0, q1) | state(q1, q0)
q1 := s(q0)

Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)
state(q1, 0) ∈ q ⇒ state(s(q1), 0) ∈ q

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0) | state(q0, q1) | state(q1, q0)
q1 := s(q0)

Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)
state(q1, 0) ∈ q ⇒ state(s(q1), 0) ∈ q

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0) | state(q0, q1) | state(q1, q0) | state(q2, q0)
q1 := s(q0)

System Timbuk [Thomas Genet]. Automated construction, with
guess of accelaration q2 := s(q2) by user assistance.

Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)
state(q2, 0) ∈ q ⇒ state(s(q2), 0) ∈ q

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0) | state(q0, q1) | state(q1, q0) | state(q2, q0)
q1 := s(q0)

System Timbuk [Thomas Genet]. Automated construction, with
guess of accelaration q2 := s(q2) by user assistance.

Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)

3. state(r, s(w)) = state(r, w)
state(q0, s(q0)) ∈ q ⇒ state(q0, q0) ∈ q

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0) | state(q0, q1) | state(q1, q0) | state(q2, q0)
q1 := s(q0)
q2 := s(q1) | s(q2)

System Timbuk [Thomas Genet]. Automated construction, with
guess of accelaration q2 := s(q2) by user assistance.

Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)
state(s(q0 | q1 | q2), q0) ∈ q ⇒ state(q0 | q1 | q2, q0) ∈ q

q0 := 0
q := state(q0, q0) | state(q0, q1) | state(q1, q0) | state(q2, q0)
q1 := s(q0)
q2 := s(q1) | s(q2)

System Timbuk [Thomas Genet]. Automated construction, with
guess of accelaration q2 := s(q2) by user assistance.

Concurrent readers/writers: verification

Properties expected:

1. mutual exclusion between readers and writers
forbidden pattern: state(s(x), s(y))

2. mutual exclusion between writers
forbidden pattern: state(x, s(s(y)))

The red set: union of

1. state
(
(q1 | q2), (q1 | q2)

)

2. state
(
(q0 | q1 | q2), (q1 | q2)

)

with q0 := 0, q1 := s(q0), q2 := s(q1) | s(q2)

Verification: The intersection between the set of reachable
configurations and the red set is empty.

Functional program

Lists built with constructor symbols cons and nil.

app(nil, y) = y
app

(
cons(x, y), z

)
= cons

(
x, app(y, z)

)

Functional program analysis

set of initial configurations qapp: terms of the form app(ℓ1, ℓ2)
where ℓ1, ℓ2 are lists of 0 and 1, defined by

q := 0 | 1
qℓ := nil | cons(q, qℓ)

qapp := app(qℓ, qℓ)

set of reachable configurations = the closure according to

app(nil, y) = y
app

(
cons(x, y), z

)
= cons

(
x, app(y, z)

)

it is
q := 0 | 1
qℓ := nil | cons(q, qℓ)

qapp := app(qℓ, qℓ) | cons(q, qapp)

Functional program : rev

[Thomas Genet, Valérie Viet Triem Tong, LPAR 01]. Timbuk.

app(nil, y) = y
app

(
cons(x, y), z

)
= cons

(
x, app(y, z)

)

rev(nil) = nil
rev

(
cons(x, y)

)
= app

(
rev(y), cons(x, nil)

)

set of initial config.:

q0 := 0
q1 := 1
qℓ1 := nil | cons(q1, qℓ1)
qℓ01 := nil | cons(q0, qℓ1) | cons(q0, qℓ01)
qrev := rev(qℓ01)

Functional program : rev

[Thomas Genet, Valérie Viet Triem Tong, LPAR 01]. Timbuk.

app(nil, y) = y
app

(
cons(x, y), z

)
= cons

(
x, app(y, z)

)

rev(nil) = nil
rev

(
cons(x, y)

)
= app

(
rev(y), cons(x, nil)

)

set of initial config.: rev(ℓ) where ℓ ∈ qℓ01 , list of 0’s followed by 1’s

q0 := 0
q1 := 1
qℓ1 := nil | cons(q1, qℓ1)
qℓ01 := nil | cons(q0, qℓ1) | cons(q0, qℓ01)
qrev := rev(qℓ01)

Functional program cntd

set of reachable configurations: by completion of equations for
initial configurations

q0 := 0
q1 := 1

qℓ1 := nil | cons(q1, qℓ1) | cons(q1, qnil) | app(qnil, qℓ1)

qℓ01 := nil | cons(q0, qℓ1) | cons(q0, qℓ01)

qrev := rev(qℓ01) | nil | app(qℓ10 , qnil)

qℓ10 := rev(qℓ01) | app(qℓ1 , qℓ0)

qnil := nil | rev(qnil)

qℓ0 := cons(q0, qnil) | app(qnil, qℓ0) | app(qℓ0 , qℓ0)

property expected: rev(ℓ) not reachable when
ℓ |= ∃x, y x < y ∧ 0(x) ∧ 1(y).

verification The intersection of qrev and the above set is empty.

Imperative programs

p ::= 0 | X | p · p | p ‖ p

◮ 0: null process (termination)

◮ X: program point

◮ p · p: sequential composition

◮ p ‖ p: parallel composition

Transition rules

◮ procedure call: X → Y · Z (Z = return point)

◮ procedure call with global state: Q ·X → Q′ · Y · Z

◮ procedure return: Q · Y → Q′

◮ global state change: Q ·X → Q′ ·X

◮ dynamic thread creation: X → Y ‖Z

◮ handshake : X‖Y → X ′‖Y ′

Imperative program

[Bouajjani Touili CAV 02]

void X() {

while(true) {

if Y() {

thread_create(&t1,Z)

} else { return }

}

}

X → Y · X (r1)
Y → t (r2)
Y → f (r3)
t · X → X ‖ Z (r4)
f → 0 (r5)

The set of reachable configurations is infinite but regular.

Related models of imperative programs

◮ Pushdown systems (sequential programs with procedure calls)

X1 · . . . ·Xn → Y1 · . . . · Ym

◮ Petri nets (multi-threaded programs)

X1 ‖ . . . ‖Xn → Y1 ‖ . . . ‖ Ym

◮ PA processes [Lugiez Schnoebelen TCS 02]

X1 → Y1 · . . . · Ym, X1 → Y1 ‖ . . . ‖ Ym

◮ Process rewrite systems (PRS) [Mayr Rusinowitch IC 99],
[Bouajjani Touili RTA 05]

X1 · . . . ·Xn → Y1 · . . . · Ym, X1 ‖ . . . ‖Xn → Y1 ‖ . . . ‖ Ym

◮ Dynamic pushdown networks [Seidl CIAA 09]

Tree languages modulo

In the above model,

◮ · is associative,

◮ ‖ is associative and commutative.

The terms of the above algebra correspond to unranked trees,

◮ ordered (modulo A) and

◮ unordered (modulo AC).

(models for XML processing)

Overview

Verification of other infinite-states systems.

◮ configuration = tree (ranked or unranked)
◮ process,
◮ message exchanged in a protocol,
◮ local network with a tree shape,
◮ tree data structure in memory, with pointers

(e.g. binary search trees)...

◮ (infinite) set of configurations = tree language L

◮ transition relation between configurations

◮ safety: transitive closure(Linit) ∩ Lerror = ∅.

Different kinds of trees

◮ finite ranked trees (terms in first order logic)

◮ finite unranked ordered trees

◮ finite unranked unordered trees

◮ infinite trees...

⇒ several classes of tree automata.

Overview: properties of automata

◮ determinism,

◮ Boolean closures,

◮ closures under transformations
(homomorphismes, transducers, rewrite systems...)

◮ minimization,

◮ decision problems, complexity,
◮ membership,
◮ emptiness,
◮ universality,
◮ inclusion, equivalence,
◮ emptiness of intersection,
◮ finiteness...

◮ pumping and star lemma,

◮ expressiveness, correspondence with logics.

Organization of the tutorial

1. finite ranked tree automata
◮ properties
◮ algorithms
◮ closure under transformation,

applications to program verification

2. correspondence with the monadic second order logic of the
tree (Thatcher and Wright’s theorem).

3. finite unranked tree automata
◮ ordered = Hedge Automata
◮ unordered = Presburger automata
◮ closure modulo A and AC
◮ XML typing and analysis of transformations

4. tree automata as Horn clause sets

Part I

Automata on Finite Ranked Trees

Terms in first order logic

Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

Signature

Definition : Signature

A signature Σ is a finite set of function symbols each of them with
an arity greater or equal to 0.

We denote Σi the set of symbols of arity i.

Example :

{+ : 2, s : 1, 0 : 0}, {∧ : 2,∨ : 2,¬ : 1,⊤,⊥ : 0}.

We also consider a countable set X of variable symbols.

Terms

Definition : Term

The set of terms over the signature Σ and X is the smallest set
T (Σ,X) such that:

- Σ0 ⊆ T (Σ,X),

- X ⊆ T (Σ,X),

- if f ∈ Σn and if t1, . . . , tn ∈ T (Σ,X), then
f(t1, . . . , tn) ∈ T (Σ,X).

The set of ground terms (terms without variables, i.e. T (Σ, ∅)) is
denoted T (Σ).

Example :

x, ¬(x), ∧
(
∨(x,¬(y)),¬(x)

)
.

Terms (2)

A term where each variable appears at most once is called linear.
A term without variable is called ground.

Depth h(t):

◮ h(a) = h(x) = 0 if a ∈ Σ0, x ∈ X ,

◮ h
(
f(t1, . . . , tn)

)
= max{h(t1), . . . , h(tn)}+ 1.

Positions

A term t ∈ T (Σ,X) can also be seen as a function from the set of
its positions Pos(t) into Σ ∪ X .
The empty position (root) is denoted ε.

Pos(t) is a subset of N∗ satisfying the following properties:

◮ Pos(t) is closed under prefix,

◮ for all p ∈ Pos(t) such that t(p) ∈ Σn (n ≥ 1),
{
pj ∈ Pos(t)

∣
∣ j ∈ N

}
= {p1, ..., pn},

◮ every p ∈ Pos(t) such that t(p) ∈ Σ0 ∪ X is maximal in
Pos(t) for the prefix ordering.

The size of t is defined by ‖t‖ = |Pos(t)|.

Subterm t|p at position p ∈ Pos(t):

◮ t|ε = t,

◮ f(t1, . . . , tn)|ip = ti|p.

The replacement in t of t|p by s is denoted t[s]p.

Positions (Example)

Example :

t = ∧(∧(x,∨(x,¬(y))),¬(x)),
t|11 = x, t|12 = ∨(x,¬(y)), t|2 = ¬(x),
t[¬(y)]11 = ∧(∧(¬(y),∨(x,¬(y))),¬(x)).

Contexts

Definition : Contexte

A context is a linear term.

The application of a context C ∈ T (Σ, {x1, . . . , xn}) to n terms
t1, . . . , tn, denoted C[t1, . . . , tn], is obtained by the replacement of
each xi by ti, for 1 ≤ i ≤ n.

Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

Bottom-up Finite Tree Automata

(a+ b a∗b)∗

q0 q1

b

b

a a

word. run on aabba: q0 −→
a q0 −→

a q0 −→
b q1 −→

b q0 −→
a q0.

tree. run on a(a(b(b(a(ε))))):
q0 → a(q0)→ a(a(q0))→ a(a(b(q1)))→ a(a(b(b(q0))))→
a(a(b(b(a(q0)))))→ a(a(b(b(a(ε)))))

with q0 := ε, q0 := a(q0), q1 := a(q1), q1 := b(q0), q0 := b(q1).

Bottom-up Finite Tree Automata

(a+ b a∗b)∗

q0 q1

b

b

a a

word. run on aabba: q0 −→
a q0 −→

a q0 −→
b q1 −→

b q0 −→
a q0.

tree. run on a(a(b(b(a(ε))))):
a(a(b(b(a(ε))))) → a(a(b(b(a(q0)))))→ a(a(b(b(q0))))→
a(a(b(q1)))→ a(a(q0))→ a(q0)→ q0

with ε→ q0, a(q0)→ q0, a(q1)→ q1, b(q0)→ q1, b(q1)→ q0.

Bottom-up Finite Tree Automata

Definition : Tree Automata

A tree automaton (TA) over a signature Σ is a tuple A =
(Σ, Q,Qf ,∆) where Q is a finite set of states, Qf ⊆ Q is the sub-
set of final states and ∆ is a set of transition rules of the form:
f(q1, . . . , qn)→ q with f ∈ Σn (n ≥ 0) and q1, . . . , qn, q ∈ Q.

The state q is called the head of the rule.
The language of A in state q is recursively defined by

L(A, q) =
{
a ∈ Σ0

∣
∣ a→ q ∈ ∆

}

∪
⋃

f(q1,...,qn)→q∈∆

f
(
L(A, q1), . . . , L(A, qn)

)

with f(L1, . . . , Ln) :=
{
f(t1, . . . , tn)

∣
∣ t1 ∈ L1, . . . , tn ∈ Ln

}
.

We say that t ∈ L(A, q) is accepted, or recognized, by A in state q.

The language of A is L(A) :=
⋃

qf∈Qf

L(A, qf) (regular language).

Recognized Languages: Operational Definition

Rewrite Relation

The rewrite relation associated to ∆ is the smallest binary relation,
denoted −−→∆ , containing∆ and closed under application of contexts.

The reflexive and transitive closure of −−→∆ is denoted −−→∗∆ .

For A = (Σ, Q,Qf ,∆), it holds that

L(A, q) =
{
t ∈ T (Σ)

∣
∣ t −−→∗

∆
q
}

and hence
L(A) =

{
t ∈ T (Σ)

∣
∣ t −−→∗

∆
q ∈ Qf

}

Tree Automata: Example 1

Example :

Σ = {∧ : 2,∨ : 2,¬ : 1,⊤,⊥ : 0},

A =

Σ, {q0, q1}, {q1},

⊥ → q0 ⊤ → q1
¬(q0) → q1 ¬(q1) → q0

∨(q0, q0) → q0 ∨(q0, q1) → q1
∨(q1, q0) → q1 ∨(q1, q1) → q1
∧(q0, q0) → q0 ∧(q0, q1) → q0
∧(q1, q0) → q0 ∧(q1, q1) → q1

∧(∧(⊤,∨(⊤,¬(⊥))),¬(⊤)) −−→A ∧(∧(⊤,∨(⊤,¬(⊥))),¬(q1))
−−→A ∧(∧(q1,∨(q1,¬(q0))),¬(q1)) −−→A ∧(∧(q1,∨(q1,¬(q0))), q0)
−−→A ∧(∧(q1,∨(q1, q1)), q0) −−→A ∧(∧(q1, q1), q0) −−→A ∧(q1, q0) −−→A q0

Tree Automata: Example 2

Example :

Σ = {∧ : 2,∨ : 2,¬ : 1,⊤,⊥ : 0},
TA recognizing the ground instances of ¬(¬(x)):

A =

Σ, {q, q¬, qf}, {qf},

⊥ → q ⊤ → q
¬(q) → q ¬(q) → q¬
¬(q¬) → qf
∨(q, q) → q ∧(q, q) → q

Example :

Ground terms embedding the pattern ¬(¬(x)): A ∪ {¬(qf) →
qf ,∨(qf , q∗)→ qf ,∨(q∗, qf)→ qf , . . .} (propagation of qf).

Linear Pattern Matching

Proposition :

Given a linear term t ∈ T (Σ,X), there exists a TA A recognizing
the set of ground instances of t: L(A) =

{
tσ

∣
∣ σ : X → T (Σ)

}
.

e.g. in regular tree model checking, definition of error
configurations by forbidden patterns.

Runs

Definition : Run

A run of a TA (Σ, Q,Qf ,∆) on a term t ∈ T (Σ) is a function
r : Pos(t)→ Q such that for all p ∈ Pos(t),
if t(p) = f ∈ Σn, r(p) = q and r(pi) = qi for all 1 ≤ i ≤ n,
then f(q1, . . . , qn)→ q ∈ ∆.

The run r is accepting if r(ε) ∈ Qf .
L(A) is the set of ground terms of T (Σ) for which there exists an
accepting run.

Pumping Lemma

Lemma : Pumping Lemma

Let A = (Σ, Q,Qf ,∆).
L(A) 6= ∅ iff there exists t ∈ L(A) such that h(t) ≤ |Q|.

Lemma : Iteration Lemma

For all TA A, there exists k > 0 such that for all term t ∈ L(A) with
h(t) > k, there exists 2 contexts C,D ∈ T (Σ, {x1}) with D 6= x1
and a term u ∈ T (Σ) such that t = C

[
D[u]

]
and for all n ≥ 0,

C
[
Dn[u]

]
∈ L(A).

usage: to show that a language is not regular.

Non Regular Languages

We show with the pumping and iteration lemmatas that the
following tree languages are not regular:

◮ {f(t, t)
∣
∣ t ∈ T (Σ)},

◮ {f(gn(a), hn(a))
∣
∣ n ≥ 0},

◮ {t ∈ T (Σ)
∣
∣ |Pos(t)| is prime}.

Epsilon-Transitions

We extend the class TA into TAε with the addition of another type
of transition rules of the form q −→ε q′ (ε-transition).
with the same expressiveness as TA.

Proposition : Suppression of ε-transitions

For all TAε Aε, there exists a TA (without ε-transition) A′ such
that L(A) = L(Aε). The size of A is polynomial in the size of Aε.

pr.: We start with Aε and we add f(q1, . . . , qn)→ q′ if there exists
f(q1, . . . , qn)→ q and q −→ε q′.

Top-Down Tree Automata

Definition : Top-Down Tree Automata

A top-down tree automaton over a signature Σ is a tuple A =
(Σ, Q,Qinit,∆) where Q is a finite set of states, Qinit ⊆ Q is the
subset of initial states and ∆ is a set of transition rules of the form:
q → f(q1, . . . , qn) with f ∈ Σn (n ≥ 0) and q1, . . . , qn, q ∈ Q.

A ground term t ∈ T (Σ) is accepted by A in the state q iff q −−→∗∆ t.

The language of A starting from the state q is
L(A, q) :=

{
t ∈ T (Σ)

∣
∣ q −−→∗∆ t

}
.

The language of A is L(A) :=
⋃

qi∈Qinit

L(Q, qi).

Top-Down Tree Automata (Expressiveness)

Proposition : Expressiveness

The set of top-down tree automata languages is exactly the set of
regular tree languages.

Remark: Notations

In the next slides

TA = Bottom-Up Tree Automata

Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

Determinism

Definition : Determinism

A TA A is deterministic if for all f ∈ Σn, for all states q1, . . . , qn
of A, there is at most one state q of A such that A contains a
transition f(q1, . . . , qn)→ q.

If A is deterministic, then for all t ∈ T (Σ), there exists at most
one state q of A such that t ∈ L(A, q). It is denoted A(t) or ∆(t).

Completeness

Definition : Completeness

A TA A is complete if for all f ∈ Σn, for all states q1, . . . , qn of A,
there is at least one state q of A such that A contains a transition
f(q1, . . . , qn)→ q.

If A is complete, then for all t ∈ T (Σ), there exists at least one
state q of A such that t ∈ L(A, q).

Completion

Proposition : Completion

For all TA A, there exists a complete TA Ac such that L(Ac) =
L(A). Moreover, if A is deterministic, then Ac is deterministic.
The size of Ac is polynomial in the size of A, its construction is
PTIME.

Completion

Proposition : Completion

For all TA A, there exists a complete TA Ac such that L(Ac) =
L(A). Moreover, if A is deterministic, then Ac is deterministic.
The size of Ac is polynomial in the size of A, its construction is
PTIME.

pr.: add a trash state q⊥.

Determinization

Proposition : Determinization

For all TA A, there exists a deterministic TA Adet such that
L(Adet) = L(A). Moreover, ifA is complete, thenAdet is complete.
The size of Adet is exponential in the size of A, its construction is
EXPTIME.

pr.: subset construction. Transitions:

f(S1, . . . , Sn)→ {q | ∃q1 ∈ S1 . . . ∃qn ∈ Sn f(q1, . . . , qn → q ∈ ∆}

for all S1, . . . , Sn ⊆ Q.

Determinization (Example)

Exercice :

Determinise and complete the previous TA (pattern matching of
¬(¬(x))):

A =

Σ, {q, q¬, qf}, {qf},

⊥ → q ⊤ → q
¬(q) → q ¬(q) → q¬
¬(q¬) → qf ¬(qf) → qf
∨(q, q) → q ∧(q, q) → q
∨(qf , q∗) → qf ∨(q∗, qf) → qf

Top-Down Tree Automata and Determinism

Definition : Determinism

A top-down tree automaton (Σ, Q,Qinit,∆) is deterministic if
|Qinit| = 1 and for all state q ∈ Q and f ∈ Σ, ∆ contains at
most one rule with left member q and symbol f .

The top-down tree automata are in general not determinizable .

Proposition :

There exists a regular tree language which is not recognizable by a
deterministic top-down tree automaton.

Top-Down Tree Automata and Determinism

Definition : Determinism

A top-down tree automaton (Σ, Q,Qinit,∆) is deterministic if
|Qinit| = 1 and for all state q ∈ Q and f ∈ Σ, ∆ contains at
most one rule with left member q and symbol f .

The top-down tree automata are in general not determinizable .

Proposition :

There exists a regular tree language which is not recognizable by a
deterministic top-down tree automaton.

pr.: L =
{
f(a, b), f(b, a)

}
.

Boolean Closure of Regular Tree Languages

Proposition : Closure

The class of regular tree languages is closed under union, intersection
and complementation.

op. technique computation time
and size of automata

∪ disjoint ∪
∩ Cartesian product

¬ determinization, completion,
invert final / non-final states (lower bound)

Remark :

For the deterministic TA, the construction for the complementation
is polynomial.

Boolean Closure of Regular Tree Languages

Proposition : Closure

The class of regular tree languages is closed under union, intersection
and complementation.

op. technique computation time
and size of automata

∪ disjoint ∪ linear

∩ Cartesian product

¬ determinization, completion,
invert final / non-final states (lower bound)

Remark :

For the deterministic TA, the construction for the complementation
is polynomial.

Boolean Closure of Regular Tree Languages

Proposition : Closure

The class of regular tree languages is closed under union, intersection
and complementation.

op. technique computation time
and size of automata

∪ disjoint ∪ linear

∩ Cartesian product quadratic

¬ determinization, completion,
invert final / non-final states (lower bound)

Remark :

For the deterministic TA, the construction for the complementation
is polynomial.

Boolean Closure of Regular Tree Languages

Proposition : Closure

The class of regular tree languages is closed under union, intersection
and complementation.

op. technique computation time
and size of automata

∪ disjoint ∪ linear

∩ Cartesian product quadratic

¬ determinization, completion,
invert final / non-final states

exponential
(lower bound)

Remark :

For the deterministic TA, the construction for the complementation
is polynomial.

Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

Cleaning

Definition : Clean

A state q of a TA A is called inhabited if there exists at least one
t ∈ L(A, q). A TA is called clean if all its states are inhabited.

Proposition : Cleaning

For all TA A, there exists a clean TA Aclean such that L(Aclean) =
L(A). The size of Aclean is smaller than the size of A, its construc-
tion is PTIME.

pr.: state marking algorithm, running time O
(
|Q| × ‖∆‖

)
.

State Marking Algorithm

We construct M ⊆ Q containing all the inhabited states.

◮ start with M = ∅

◮ for all f ∈ Σ, of arity n ≥ 0, and
all q1, . . . , qn ∈M st there exists f(q1, . . . , qn)→ q in ∆,
add q to M (if it was not already).

We iterate the last step until a fixpoint M∗ is reached.

Lemma :

q ∈M∗ iff ∃t ∈ L(A, q).

Membership Problem

Definition : Membership

INPUT: a TA A over Σ, a term t ∈ T (Σ).
QUESTION: t ∈ L(A)?

Proposition : Membership

The membership problem is decidable in polynomial time.

Exact complexity:

◮ non-deterministic bottom-up: LOGCFL-complete

◮ deterministic bottom-up: unknown (LOGDCFL)

◮ deterministic top-down: LOGSPACE-complete.

Emptiness Problem

Definition : Emptiness

INPUT: a TA A over Σ.
QUESTION: L(A) = ∅?

Proposition : Emptiness

The emptiness problem is decidable in linear time.

Emptiness Problem

Definition : Emptiness

INPUT: a TA A over Σ.
QUESTION: L(A) = ∅?

Proposition : Emptiness

The emptiness problem is decidable in linear time.

pr.:
quadratic: clean, check if the clean automaton contains a final
state.
linear: reduction to propositional HORN-SAT.
linear bis: optimization of the data structures for the cleaning
(exo).

Remark :

The problem of the emptiness is PTIME-complete.

Instance-Membership Problem

Definition : Instance-Membership (IM)

INPUT: a TA A over Σ, a term t ∈ T (Σ,X).
QUESTION: does there exists σ : vars(t)→ T (Σ) s.t. tσ ∈ L(A)?

Proposition : Instance-Membership

1. The problem IM is decidable in polynomial time when t is
linear.

2. The problem IM is NP-complet when A is deterministic.

3. The problem IM is EXPTIME-complete in general.

Problem of the Emptiness of Intersection

Definition : Emptiness of Intersection

INPUT: n TA A1, . . . ,An over Σ.
QUESTION: L(A1) ∩ . . . ∩ L(An) = ∅?

Proposition : Emptiness of Intersection

The problem of the emptiness of intersection is EXPTIME-complete.

Problem of the Emptiness of Intersection

Definition : Emptiness of Intersection

INPUT: n TA A1, . . . ,An over Σ.
QUESTION: L(A1) ∩ . . . ∩ L(An) = ∅?

Proposition : Emptiness of Intersection

The problem of the emptiness of intersection is EXPTIME-complete.

pr.: EXPTIME: n applications of the closure under ∩ and
emptiness decision.

EXPTIME-hardness: APSPACE = EXPTIME
reduction of the problem of the existence of a successful run
(starting from an initial configuration) of an alternating Turing
machine (ATM) M = (Γ, S, s0, Sf , δ).
[Seidl 94], [Veanes 97]

Let M = (Γ, S, s0, Sf , δ) be a Turing Machine (Γ: input alphabet,
S: state set, s0 initial state, Sf final states, δ: transition relation).
First some notations.

◮ a configuration of M is a word of Γ∗ΓSΓ
∗ where

ΓS = {as | a ∈ Γ, s ∈ S}. In this word, the letter of ΓS

indicates both the current state and the current position of
the head of M .

◮ a final configuration of M is a word of Γ∗ΓSf
Γ∗.

◮ an initial configuration of M is a word of Γs0Γ
∗.

◮ a transition of M (following δ) between two configurations v
and v′ is denoted v � v′

The initial configuration v0 is accepting iff there exists a final
configuration vf and a finite sequence of transitions v0 � . . .� vf?
This problem whether v0 is accepting is undecidable in general.
If the tape is polynomially bounded (we are restricted to
configurations of length n = |v0|

c, for some fixed c ∈ N), the
problem is PSPACE complete.
M alternating: S = S∃ ⊎ S∀.
Definition accepting configurations:

◮ every final configuration (whose state is in Sf) is accepting

◮ a configuration c whose state is in S∃ is accepting if it has at
least one successor accepting

◮ a configuration c whose state is in S∀ is accepting if all its
successors are accepting

Theorem (Chandra, Kozen, Stockmeyer 81)

APSPACE = EXPTIME

In order to show EXPTIME-hardness, we reduce the problem of
deciding whether v0 is accepting for M alternating and
polynomially bounded.
Hypotheses (non restrictive):

◮ s0 ∈ S∃ or s0 ∈ S∀ ∩ Sf
◮ s0 is non reentering (it only occurs in v0)

◮ every configuration with state in S∀ has 0 or 2 successors

◮ final configurations are restricted to ♭Sf
♭∗ where ♭ ∈ Γ is the

blank symbol.

◮ Sf is a singleton.

2 technical definitions: for k ≤ n,

view(v, k) = v[k]v[k + 1] if k = 1
v[k − 1]v[k] if k = n
v[k − 1]v[k]v[k + 1] otherwise

view(v, v1, v2, k) = 〈view(v, k), view(v1, k), view(v2, k)〉

v �k 〈v1, v2〉 iff

1. if v[k] ∈ ΓS , then ∃w � w1, w2 s.t.
view(v, v1, v2, k) = view(w,w1, w2, k)

2. if v[k] = a ∈ Γ, then v1[k] ∈ {a} ∪ aS and v2 = ε or
v2[k] ∈ {a} ∪ aS .

first item: around position k, we have two correct transitions of
M . This can be tested by the membership of view(v, v1, v2, k) to a
given set which only depends on M .

Lemma

v � v1, v2 iff ∀k ≤ n v �k 〈v1, v2〉.

Term representations of runs:
rem. a run of M is not a sequence of configurations but a tree of
configurations (because of alternation).
Signature Σ: ∅: constant, Γ: unary, S: unaires, p binary.
Notation: if v = a1 . . . an, v(x) denotes an(an−1(. . . a1(x))).
Term representations of runs:

◮ vf(p(∅, ∅)) with vf final configuration,

◮ v(p(t1, t2)) with v ∀-configuration, t1 = v′1(p(t1,1, t1,2)),
t2 = v′2(p(t2,1, t2,2)) are two term representations of runs, and
v1 � v′1, v2 � v′2

◮ v(p(t1, ∅)) with v ∃-configuration, t1 = v′1(p(t1,1, t1,2)) term
representations of run, and v1 � v′1.

notations for t1 = v′1(p(t1,1, t1,2)):

◮ head(t1) = v1

◮ left(t1) = t1,1

◮ right(t1) = t1,2.

This recursive definition suggest the construction of a TA
recognizing term representations of successful runs. The difficulty

is the conditions v1 � v′1, v2 � v′2, for which we use the above
lemma.
We build 2n deterministic automata :
for all 1 < k < n, Ak recognizes

◮ vf(p(∅, ∅)) (recall there is only 1 final configuration by hyp.)

◮ v(p(t1, t2)) such that t1 6= ∅ and
◮ v �k

〈
head(t1), head(t2)

〉

◮ left(t1) ∈ L(Ak), right(t1) ∈ L(Ak) ∪ {∅},
◮ t2 = ∅ or left(t2) ∈ L(Ak), right(t2) ∈ L(Ak) ∪ {∅}

idea: Ak memorizes view(head(t1), k) and view(head(t2), k) and
compare with view(v, k).
for all 1 < k < n, A′

k recognizes the terms v0(p(t1, t2)) with
t1 = t2 = ∅ (if s0 universal and final) or t2 = ∅ (if s0 existential,
not final) and t1, t2 ∈ T , minimal set of terms without s0
containing

◮ ∅

◮ v(p(t1, t2)) such that t1 6= ∅ and
◮ v �k

〈
head(t1), head(t2)

〉

◮ left(t1) ∈ T , right(t1) ∈ T ,

◮ t2 = ∅ or left(t2) ∈ T , right(t2) ∈ T

representations of successful runs =

n⋂

k=1

L(Ak) ∩ L(A
′
k).

Problem of Universality

Definition : Universality

INPUT: a TA A over Σ.
QUESTION: L(A) = T (Σ)

Proposition : Universality

The problem of universality is EXPTIME-complete.

Problem of Universality

Definition : Universality

INPUT: a TA A over Σ.
QUESTION: L(A) = T (Σ)

Proposition : Universality

The problem of universality is EXPTIME-complete.

pr.: EXPTIME: Boolean closure and emptiness decision.

EXPTIME-hardness: again APSPACE = EXPTIME.

Remark :

The problem of universality is decidable in polynomial time for the
deterministic (bottom-up) TA.

pr.: completion and cleaning.

Problems of Inclusion an Equivalence

Definition : Inclusion

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) ⊆ L(A2)

Definition : Equivalence

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) = L(A2)

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.

Problems of Inclusion an Equivalence

Definition : Inclusion

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) ⊆ L(A2)

Definition : Equivalence

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) = L(A2)

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.

pr.: L(A1) ⊆ L(A2) iff L(A1) ∩ L(A2) = ∅.

Problems of Inclusion an Equivalence

Definition : Inclusion

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) ⊆ L(A2)

Definition : Equivalence

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) = L(A2)

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.

pr.: L(A1) ⊆ L(A2) iff L(A1) ∩ L(A2) = ∅.
EXPTIME-hardness: universality is T (Σ) = L(A2)?

Remark :

If A1 and A2 are deterministic, it is O
(
‖A1‖ × ‖A2‖

)
.

Problem of Finiteness

Definition : Finiteness

INPUT: a TA A
QUESTION: is L(A) finite?

Proposition : Finiteness

The problem of finiteness is decidable in polynomial time.

Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

Theorem of Myhill-Nerode

Definition :

A congruence ≡ on T (Σ) is an equivalence relation such that
for all f ∈ Σn, if s1 ≡ t1,. . . , sn ≡ tn, then f(s1, . . . , sn) ≡
f(t1, . . . , tn).

Given L ⊆ T (Σ), the congruence ≡L is defined by:

s ≡L t if for all context C ∈ T
(
Σ, {x}

)
, C[s] ∈ L iff C[t] ∈ L.

Theorem : Myhill-Nerode

The three following propositions are equivalent:

1. L is regular

2. L is a union of equivalence classes for a congruence ≡ of
finite index

3. ≡L is a congruence of finite index

Proof Theorem of Myhill-Nerode

1 ⇒ 2. A deterministic, def. s ≡A t iff A(s) = A(t).

2 ⇒ 3. we show that if s ≡ t then s ≡L t, hence the
index of ≡L ≤ index of ≡ (since we have ≡⊆≡L).
If s ≡ t then C[s] ≡ C[t] for all C[] (induction on
C), hence C[s] ∈ L iff C[t] ∈ L, i.e. s ≡L t.

3 ⇒ 1. we construct Amin = (Qmin, Q
f
min,∆min),

◮ Qmin = equivalence classes of ≡L,
◮ Qf

min = {[s]
∣
∣ s ∈ L},

◮ ∆min = {f
(
[s1], . . . , [sn]

)
→

[
f(s1, . . . , sn)

]
}

Clearly, Amin is deterministic, and for all s ∈ T (Σ),
Amin(s) = [s]L, i.e. s ∈ L(Amin) iff s ∈ L.

Minimization

Corollary :

For all DTA A = (Σ, Q,Qf ,∆), there exists a unique DTA Amin

whose number of states is the index of ≡L(A) and such that
L(Amin) = L(A).

Minimization
Let A = (Σ, Q,Qf ,∆) be a DTA, we build a deterministic minimal
automaton Amin as in the proof of 3⇒ 1 of the previous theorem
for L(A) (i.e. Qmin is the set of equivalence classes for ≡L(A)).

We build first an equivalence ≈ on the states of Q:

◮ q ≈0 q
′ iff q, q′ ∈ Qf ou q, q′ ∈ Q \Qf .

◮ q ≈k+1 q
′ iff q ≈k q

′ et ∀f ∈ Σn,
∀q1, . . . , qi−1, qi+1, . . . , qn ∈ Q (1 ≤ i ≤ n),

∆
(
f(q1, . . . , qi−1, q, qi+1, . . . , qn)

)
≈k ∆

(
f(q1, . . . , qi−1, q

′, qi+1, . . . ,

Let ≈ be the fixpoint of this construction, ≈ is ≡L(A), hence

Amin = (Σ, Qmin, Q
f
min,∆min) with :

◮ Qmin = {[q]≈
∣
∣ q ∈ Q},

◮ Qf
min = {[qf]≈

∣
∣ qf ∈ Qf},

◮ ∆min =
{
f
(
[q1]≈, . . . , [qn]≈

)
→

[
f(q1, . . . , qn)

]

≈

}
.

recognizes L(A). and it is smaller than A.

Algebraic Characterization of Regular Languages

Corollary :

A set L ⊆ T (Σ) is regular iff there exists

◮ a Σ-algebra Q of finite domain Q,

◮ an homomorphism h : T (Σ)→ A,

◮ a subset Qf ⊆ Q such that L = h−1(Qf).

operations of Q:
for each f ∈ Σn, there is a function fQ : Qn → Q.

Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification
Tree Homomorphisms
Tree Transducers
Term Rewriting
Tree Automata Based Program Verification

Tree Transformations, Verification

◮ formalisms for the transformation of terms (languages):
rewrite systems, tree homomorphisms, transducers...

= transitions in an infinite states system,
= evaluation of programs,
= transformation of XML documents, updates...

◮ problem of the type checking:

given:
◮ Lin ⊆ T (Σ), (regular) input language
◮ h transformation T (Σ)→ T (Σ′)
◮ Lout ⊆ T (Σ′) (regular) output language

question: do we have h(Lin) ⊆ Lout?

Tree Homomorphisms

Tree Homomorphisms

Definition :

h : T (Σ)→ T (Σ′)

h
(
f(t1, . . . , tn)

)
:= tf

{
x1 ← h(t1), . . . , xn ← h(tn)

}

for f ∈ Σn, with tf ∈ T
(
Σ′, {x1, . . . , xn}

)
.

h is called

◮ linear if for all f ∈ Σ, tf is linear,

◮ complete if for all f ∈ Σn, vars(tf) = {x1, . . . , xn},

◮ symbol-to-symbol if for all f ∈ Σn, height(tf) = 1.

Homomorphisms: Examples

Example : ternary trees → binary trees

Let Σ = {a : 0, b : 0, g : 3}, Σ′ = {a : 0, b : 0, f : 2} and
h : T (Σ)→ T (Σ′) defined by

◮ ta = a,

◮ tb = b,

◮ tg = f(x1, f(x2, x3)).

h
(
g(a, g(b, b, b), a)

)
= f(a, f(f(f(b, f(b, b))), a))

Example : Elimination of the ∧

Let Σ = {0 : 0, 1 : 0,¬ : 1,∨ : 2,∧ : 2}, Σ′ = {0 : 0, 1 : 0,¬ : 1,∨ :
2} and h : T (Σ)→ T (Σ′) with t∧ = ¬(∨(¬(x1),¬(x2))).

Closure of Regular Languages under Linear

Homomorphisms

Theorem :

If L is regular and h is a linear homomorphism, then h(L) is regular.

Closure of Regular Languages under Linear

Homomorphisms

Theorem :

If L is regular and h is a linear homomorphism, then h(L) is regular.

let A = (Q,Qf ,∆) be clean, we build A′ = (Q′, Q′
f ,∆

′).
For each r = f(q1, . . . , qn)→ q ∈ ∆, with tf ∈ T (Σ

′,Xn) (linear),
let Qr = {qrp | p ∈ Pos(tf)}, and ∆r defined as follows:
for all p ∈ Pos(tf):

◮ if tf (p) = g ∈ Σ′
m, then g(qrp1 , . . . , q

r
pm)→ qrp ∈ ∆r,

◮ if tf (p) = xi, then qi −→
ε qrp ∈ ∆r,

◮ qrε −→
ε q ∈ ∆r.

Q′ = Q ∪
⋃

r∈∆Q
r,

Q′
f = Qf ,

∆′ =
⋃

r∈∆∆r.

It holds that h
(
L(A)

)
= L(A′).

Closure of Regular Languages under Linear

Homomorphisms

This is not true in general for the non-linear homomorphisms.

Closure of Regular Languages under Linear

Homomorphisms

This is not true in general for the non-linear homomorphisms.

Example : Non-linear homomorphisms

Σ = {a : 0, g : 1, f : 1}, Σ′ = {a : 0, g : 1, f ′ : 2},
h : T (Σ)→ T (Σ′) with ta = a, tg = g(x1), tf = f ′(x1, x1).
Let L =

{
f
(
gn(a)

) ∣
∣ n ≥ 0

}
,

h(L) =
{
f ′
(
gn(a), gn(a)

) ∣
∣ n ≥ 0

}
is not regular.

Closure of Regular Languages under Inverse

Homomorphisms

Theorem :

For all regular languages L and all homomorphisms h,
h−1(L) is regular.

A′ = (Q′, Q′
f ,∆

′) complete deterministic such that L(A′) = L.
We construct A = (Q,Qf ,∆) with Q = Q′ ⊎ {q∀} Qf = Q′

f and ∆
is defined by:

◮ for a ∈ Σ0, if ta −−→
∗
A′ q then a→ q ∈ ∆;

◮ for all f ∈ Σn with n > 0, for p1, . . . , pn ∈ Q,
if tf{x1 7→ p1, . . . , xn 7→ pn} −−→

∗
A′ q then

f(q1, . . . , qn)→ q ∈ ∆ where qi = pi if xi occurs in tf and
qi = q∀ otherwise;

◮ for a ∈ Σ0, a→ q∀ ∈ ∆;

◮ for f ∈ Σn where n > 0, f(q∀, . . . , q∀)→ q∀ ∈ ∆.

It holds that t −−→∗A q iff h(t) −−→∗A′ q for all q ∈ Q′.

Closure under Homomorphisms

Theorem :

The class of regular tree languages is the smallest non trivial class
of sets of trees closed under linear homomorphisms and inverse ho-
momorphisms.

A problem whose decidability has been open for 35 years:

INPUT: a TA A, an homomorphism h
QUESTION: is h(L(A)) regular?

Tree Transducers

Tree Transducers

Definition : Bottom-up Tree Transducers

A bottom-up tree transducer (TT) is a tuple U = (Σ,Σ′, Q,Qf ,∆)
where

◮ Σ, Σ′ are the input, resp. output, signatures,

◮ Q is a finite set of states,

◮ Qf ⊆ Q is the subset of final states

◮ ∆ is a set of transduction (rewrite) rules of the form:
◮ f(p1(x1), . . . , pn(xn))→ p(u) with f ∈ Σn (n ≥ 0),
p1, . . . , pn, p ∈ Q, x1, . . . , xn pairwise distinct and
u ∈ T (Σ′, {x1, . . . , xn}), or

◮ p(x1)→ p′(u) with q, q′ ∈ Q, u ∈ T (Σ′, {x1}).

A TT is linear if all the u in transduction rules are linear.

The transduction relation of U is the binary relation:

L(U) =
{
〈t, t′〉

∣
∣ t −→∗

U
q(t′), t ∈ T (Σ), t′ ∈ T (Σ′), q ∈ Qf

}

Example 1

U1 =
(
{f : 1, a : 0}, {g : 2, f, f ′ : 1, a : 0}, {q, q′}, {q′},∆1

)
,

∆1 =

{
a → q(a)

f(q(x1)) → q(f(x1))
∣
∣ q(f ′(x1))

∣
∣ q′(g(x1, x1))

}

Example 2

Σin = {f : 2, g : 1, a : 0},
U2 =

(
Σin,Σin ∪ {f

′ : 1}, {q, q′, qf}, {qf},∆2

)
,

∆2 =

a → q(a)
∣
∣ q′(a)

g(q(x1)) → q(g(x1))
g(q′(x1)) → q′(g(x1))

f(q′(x1), q
′(x2)) → q′(f(x1, x2))

f(q′(x1), q
′(x2)) → qf(f

′(x1))

L(U2) =
{
〈f(t1, t2), f

′(t1)
∣
∣ t2 = gm(a),m ≥ 0

}

Tree Transducers, Example

Token tree protocol [Abdulla et al CAV02]

n → q0(n
′)

t → q1(n
′)

n
(
q0(x1), q0(x2)

)
→ q0

(
n(x1, x2)

)

t
(
q0(x1), q0(x2)

)
→ q1

(
n(x1, x2)

)

n
(
q1(x1), q0(x2)

)
→ q2

(
t(x1, x2)

)

n
(
q0(x1), q1(x2)

)
→ q2

(
t(x1, x2)

)

n
(
q2(x1), q0(x2)

)
→ q2

(
n(x1, x2)

)

n
(
q0(x1), q2(x2)

)
→ q2

(
n(x1, x2)

)

property: mutual exclusion (for every network)
initial: terms of T

(
{t, n, t, n}

)
, containing exactly one token.

verification: the intersection of his closure with the set
{q2(t) | t ∈ T

(
{t, n, t, n}

)
, t contains at least 2 tokens} (regular) is

empty.

Languages

◮ Linear bottom-up TT are closed under composition.

◮ Deterministic bottom-up TT are closed under composition.

Theorem :
◮ The domain of a TT is a regular tree language.

◮ The image of a regular tree language by a linear TT is a
regular tree language.

Transducers and Homomorphisms

An homomorphism is called delabeling if it is linear, complete,
symbol-to-symbol.

Definition : Bimorphisms

A bimorphism is a triple B = (h, h′, L) where h, h′ are homomor-
phisms and L is a regular tree language.

L(B) =
{
〈h(t), h′(t)〉

∣
∣ t ∈ L

}

Theorem :

TT ≡ bimorphisms (h, h′, L) where h delabeling.

Term Rewriting Systems

Term Rewriting

Definition : Substitution

A substitution is a function of finite domain from X into T (Σ,X).
We extend the definition to T (Σ,X)→ T (Σ,X) by:

f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ) (n ≥ 0)

The application C[t1, . . . , tn] of a context C ∈ T (Σ, {x1, . . . , xn})
to n terms t1, . . . , tn, is Cσ with σ = {x1 7→ t1, . . . , xn 7→ tn}.

Term Rewriting

A rewrite system R is a finite set of rewrite rules of the form
ℓ→ r with ℓ, r ∈ T (Σ,X).

The relation −−→R is the smallest binary relation containing R, and
closed under application of contexts and substitutions.
i.e. s −−→

R
t iff ∃p ∈ Pos(s), ℓ→ r ∈ R, σ, s|p = ℓσ and

t = s[rσ]p.

We note −−→∗R the reflexive and transitive closure of −−→R .

Example :

R = {+(0, x)→ x,+(s(x), y)→ s(+(x, y))}.

+
(
s(s(0)),+(0, s(0))

)
−−→
R

+
(
s(s(0)), s(0)

)

−−→
R

s
(
+(s(0), s(0))

)

−−→R s
(
s
(
+(0, s(0))

))

−−→R s(s(s(0)))

TRS Preserving Regularity

For a TRS R over Σ and L ⊆ T (Σ),

R∗(L) = {t ∈ T (Σ) | ∃s ∈ L, s −−→∗
R

t}

Regularity Preservation

Identify a class C of TRS such that
for all R ∈ C, R∗(L) is regular if L is regular.

Theorem : [Gilleron STACS 91]

It is undecidable in general whether a given TRS is
preserving regularity.

Ground TRS

Theorem : [Brainerd 69]

Ground TRS are preserving regularity.

Given: TA Ain and ground TRS R. We start with

Ain ∪ (Σ, QR, ∅, {f(qr1 , . . . , qrn)→ qr | r = f(r1, . . . rn) ∈ QR})

where QR = strict subterms(rhs(R)),
and add transitions according to the schema:

lhs(R) ∋ ℓ

f(r1, . . . , rn)

q

f(qr1 , . . . , qrn)

A
R

A

A

no states are added → termination.
The TA obtained recognizes R∗

(
L(Ain)

)
.

Ground TRS (examples)

lhs(R) ∋ ℓ

f(r1, . . . , rn)

q

f(qr1 , . . . , qrn)

A
R

A

A

s(s(0))→ 0 ⊥+ 1→ s(⊥)

s(s(0)) q

0

A

∗

R
A

⊥+ 1 q

s(⊥) s(q⊥)

A
R

A

A

Linear and Right-Shallow TRS
right-shallow: variables at depth at most 1 in rhs of rules.

Theorem : [Salomaa 88]

Linear and right-shallow TRS preserve regularity.

Given: TA Ain and linear and right-shallow TRS R.
The construction is similar to the ground TRS case: We start with

Ain ∪ (Σ, QR, ∅, {f(qr1 , . . . , qrn)→ qr | r = f(r1, . . . rn) ∈ QR})

where QR = strict subterms(rhs(R)) \ X ,
and add transitions according to the schema:

ℓσ

f(r1, . . . , rn)σ

q

f(q1, . . . , qn)

A
R

A

A

where ℓ ∈ lhs(R), substitution σ : vars(ℓ)→ Q, for all i ≤ n, if
ri /∈ X then qi = qri and qi = riσ otherwise.

Linear and Right-Shallow TRS (Examples)

ℓσ

f(r1, . . . , rn)σ

q

f(q1, . . . , qn)

A
R

A

A

where ℓ ∈ lhs(R), substitution σ : vars(ℓ)→ Q, for all i ≤ n, if
ri /∈ X then qi = qri and qi = riσ otherwise.

s(x)− s(y)→ x− y s(x)→ s(0) + x

s(q1)− s(q2) q′1 − q
′
2

q

q1 − q2

A

R A

s(q1) q

s(0) + q1 qs(0) + q1

A
R

A

A

Linear and Right-Shallow TRS: Extensions

Other classes of TRS preserving regularity

◮ [Coquide et al 94] semi-monadic or inverse-growing TRS:
for all ℓ→ r ∈ R, vars(r) ∩ vars(ℓ) at depth at most 1 in r.

◮ [Nagaya Toyama RTA 02] right-linear and right-shallow TRS.
NOT left-linear.

◮ [Gyenizse Vagvolgyi GSMTRS 98]
linear and generalized semi-monadic TRS

◮ [Takai Kaji Seki RTA 00]
right-linear finite path overlapping TRS

Right-Linearity and Right-Shallowness Conditions

Relaxing these conditions generaly breaks regularity preservation.

Example : Right-Linearity

letR = {f(x)→ g(x, x)} (flat and left-linear), Lin = {f(. . . f(c))}.
R∗(Lin)∩T

(
{g, c}

)
is the set of balanced binary trees of T

(
{g, c}

)
,

which is not regular.

Example : Right-Shallowness

With rewrite rules whose left and right hand-side have height at most
two, it is possible simulate Turing machine computations, even in
the case of words (symbols of arity 0 or 1).

Exceptions (for the right-shallowness)

◮ [Rety LPAR 99] constructor based (with restrictions on Lin).
ex: app(nil, y)→ y, app

(
cons(x, y), z

)
→ cons

(
x, app(y, z)

)
.

◮ [Seki et al RTA 02] Layered Transducing TRS

Linear I/O Separated Layered Transducing TRS

[Seki et al RTA 02]
This class corresponds to linear tree transducers.

over Σ = Σi ⊎ Σo ⊎Q, rewrite rules of the form

fi(p1(x1), ..., pn(xn)) → p(t)
p′1(x1) → p′(t′)

where fi ∈ Σi, p1, . . . , pn, p, p
′
1, p

′ ∈ Q x1, . . . , xn are disjoint
variables, t, t′ ∈ T (Σo,X) such that vars(t) ⊆ {x1, . . . , xn} and
vars(t′) ⊆ {x1}.

To know more

Further results closure of tree automata languages:

◮ closure of extended tree automata languages, modulo
[Gallagher Rosendahl 08], [JRV JLAP 08], [JKV LATA 09],
[JKV IC 11]

◮ rewrite strategies (bottom-up, context-sensitive, innermost,
outermost...) [Durand et al RTA 07,10,11],
[Kojima Sakai RTA 08], [Rety Vuotto JSC 05], [GGJ WRS 08]

◮ constrained/controlled rewriting
[Sénizergues French Spring School of TCS 93],
[JKS FroCoS 11]

◮ unranked tree rewriting (XML updates)
[JR RTA 08], [JR PPDP 10]

Tree Automata Based Program Verification
Some Techniques and Tools

Program Analysis with Tree Automata / Grammars

(very partial list) focus on 3 approaches

◮ [Reynolds IP 68] LISP programs → lfp solutions of equations

◮ [Jones Muchnick POPL 79] LISP programs → tree grammars

◮ [Jones 87] lazy higher-order functional programs

◮ [Heintze Jaffar 90] logic programs → set constraints

◮ [Lugiez Schnoebelen CONCUR 98], [Bouajjani Touili 03+]
imperative programs w. prefix rewriting: PA-processes, PAD
systems, PRS...

◮ [Genet et al 98+]
functional programs, security protocols, Java Bytecode

◮ [Jones Andersen TCS 07] functional programs

Timbuk

[Genet et al] (IRISA)
http://www.irisa.fr/celtique/genet/timbuk

Computation of rewrite closure by tree automata completion, with
over-approximations. User defined or infered accelerations.

◮ analysis of security protocols
SmartRight, Copy Protection Technology for DVB, Thomson

◮ analysis of Java Bytecode with Copster

Timbuk library, used in other tools like

◮ TA4SP, one of the proof back-ends of the AVISPA tool for
security protocol verification

◮ SPADE

http://www.irisa.fr/celtique/genet/timbuk

SPADE ♠

[Tayssir Touili et al CAV 07] (LIAFA).
http://www.liafa.jussieu.fr/~touili/spade.html

Reachability analysis for multithreaded dynamic and recursive
programs.

◮ (PAD) Systems [Touili VISSAS 05]

X1 · . . . ·Xn → Y1 · . . . · Ym, X1 → Y1 ‖ . . . ‖ Ym

Case studies

◮ Windows Bluetooth driver

◮ multithreaded program based on the class java.util.Vector
from the Java Standard Collection Framework

◮ concurrent insertions on a binary search tree

http://www.liafa.jussieu.fr/~touili/spade.html

Approximations of Collecting Semantics

[Jones Andersen TCS 07]

functional program P

right-linear TRS R
regular tree grammar G0
set of initial configurations

+

regular tree grammar G
over-approximation of

the collecting semantics of P

collecting semantics [Cousot2] (roughly): mapping associating to
each program point p the set of configurations reachable at p.

[Kochems Ong RTA 11] finer approximation using indexed linear
tree grammars (instead of regular grammars).

Regular Tree Grammars

Definition : Regular Tree Grammars

A is a tuple G = 〈N , S,Σ, P 〉 where N is a finite set of nullary non-
terminal symbols, S ∈ N (axiom of G), Σ is a signature disjoint
from N and P is a set of production rules of the form X := r with
r ∈ T (Σ ∪ N).

Example :

Σ = {∧ : 2,∨ : 2,¬ : 1,⊤,⊥ : 0}, G = ({X0,X1},X1,Σ, P).

P =

X0 := ⊥ X1 := ⊤
X1 := ¬(X0) X0 := ¬(X1)
X0 := ∨(X0,X0) X1 := ∨(X0,X1)
X1 := ∨(X1,X0) X1 := ∨(X1,X1)
X0 := ∧(X0,X0) X0 := ∧(X0,X1)
X0 := ∧(X1,X0) X1 := ∧(X1,X1)

Approximations of Collecting Semantics: Example
Concurrent readers/writers: reachable configurations

R = R1 : state(0, 0) → state(0, s(0))
R2 : state(X2, 0) → state(s(X2), 0)
R3 : state(X3, s(Y3)) → state(X3, Y3)
R4 : state(s(X4), Y4) → state(X4, Y4)

state(0, 0) state
(
0, s(0)

)

state
(
s(0), 0

)

state
(
s(s(0)), 0

)

...

1

32 4

2 4

Approximations of Collecting Semantics: Example
R = R1 : state(0, 0) → state(0, s(0))

R2 : state(X2, 0) → state(s(X2), 0)
R3 : state(X3, s(Y3)) → state(X3, Y3)
R4 : state(s(X4), Y4) → state(X4, Y4)

R0 := state(0, 0)

R0 := R1 state(0, 0) = lhs(R1)
R1 := state(0, s(0))

R0 := R2 state(0, 0) = state(X2, 0){X2 7→ 0}
R2 := state(s(X2), 0)
X2 := 0

X2 := s(X2) state(s(X2), 0) =
state(X2, 0){X2 7→ s(X2)}

R1 := R3 state(0, s(0)) =
R3 := state(X3, Y3) state(X3, s(Y3)){X3 7→ 0, Y3 7→ 0}
X3 := 0, Y3 := 0

R2 := R4 state(s(X2), 0)) =
R4 := state(s(X4), Y4) state(s(X4), Y4){X4 7→ X2, Y4 7→ 0}
X4 := X2, Y4 := 0

Approximations of Collecting Semantics: Example

R = R1 : state(0, 0) → state(0, s(0))
R2 : state(X2, 0) → state(s(X2), 0)
R3 : state(X3, s(Y3)) → state(X3, Y3)
R4 : state(s(X4), Y4) → state(X4, Y4)

R0 := state(0, 0)

R0 := R1

R1 := state(0, s(0))

R0 := R2

R2 := state(s(X2), 0)
X2 := 0

X2 := s(X2)

R1 := R3

R3 := state(X3, Y3)
X3 := 0, Y3 := 0

R2 := R4

R4 := state(s(X4), Y4)
X4 := X2, Y4 := 0

state(0, 0) state
(
0, s(0)

)

state
(
s(0), 0

)

state
(
s(s(0)), 0

)

...

1

32 4

2 4

Approximations of Collecting Semantics: Example 2
[Jones Andersen TCS 07]

let rec first l1 l2 =
match l1, l2 with
[], → []
l::m, x::xs → x::(first m xs);

R2 : first(nil,Xs) → nil
R3 : first(cons(1,M), cons(X,Xs)) → cons(X, first(M,Xs))

let rec sequence y =
y::(sequence (1::y));

R4 : sequence(Y) → cons(Y, sequence(cons(1, Y)))

let g n =
first n (sequence []);

R1 : g(N) → first(N, sequence(nil))

Part II

Weak Second Order Monadic Logic with k Successors

Logic and Automata

◮ logic for expressing properties of labeled binary trees

= specification of tree languages,

Logic and Automata

◮ logic for expressing properties of labeled binary trees

= specification of tree languages, example:

t |= ∀x a(x)⇒ ∃y y > x ∧ b(y)

◮ compilation of formulae into automata

= decision algorithms.

◮ equivalence between both formalisms

[Thatcher & Wright’s theorem].

Plan

WSkS: Definition

Automata → Logic

Logic → Automata

Fragments and Extensions of WSkS

Interpretation Structures

L := set of predicate symbols P1, . . . Pn with arity.

A structureM over L is a tuple

M :=
〈
D, PM

1 , . . . , PM
n

〉

where

◮ D is the domain ofM,

◮ every PM
i (interpretation of Pi) is a subset of Darity(Pi)

(relation).

Term as Structure

Σ signature, k = maximal arity.

LΣ := {=, <, S1, . . . , Sk, La

∣
∣ a ∈ Σ}.

to t ∈ T (Σ), we associate a structure t over LΣ

t :=
〈
Pos(t),=, <, S1, . . . , Sk, L

t
a, L

t
b, · · ·

〉

where

◮ domain = positions of t (Pos(t) ⊂ {1, . . . , k}∗)

◮ = equality over Pos(t),

◮ < prefix ordering over Pos(t),

◮ Si =
{
〈p, p · i〉 | p, p · i ∈ Pos(t)

}
(ith successor position),

◮ L
t
a = {p ∈ Pos(t) | t(p) = a}.

FOL with k Successors

◮ first order variables x, y. . .

◮ form ::= x = y
∣
∣ x < y

∣
∣ S1(x, y)

∣
∣ . . .

∣
∣ Sk(x, y)

∣
∣ La(x) a ∈ Σ

∣
∣ form ∧ form

∣
∣ form ∨ form

∣
∣ ¬form

∣
∣ ∃x form

∣
∣ ∀x form

Notation: φ(x1, . . . , xm),
where x1, . . . , xm are the free variables of φ.

WSkS: Syntax

◮ first order variables x, y. . .

◮ second order variables X,Y . . .

◮ form ::= x = y
∣
∣ x < y

∣
∣ x ∈ X

∣
∣ S1(x, y)

∣
∣ . . .

∣
∣ Sk(x, y)

∣
∣ La(x) a ∈ Σ

∣
∣ form ∧ form

∣
∣ form ∨ form

∣
∣ ¬form

∣
∣ ∃x form

∣
∣ ∃X form

∣
∣ ∀x form

∣
∣ ∀X form

Notation: φ(x1, . . . , xm,X1, . . . ,Xn),
where x1, . . . , xm, X1, . . . ,Xn are the free variables of φ.

WSkS: Semantics

◮ t ∈ T (Σ),

◮ valuation σ of first order variables into Pos(t),

◮ valuation δ of second order variables into subsets of Pos(t),

◮ t, σ, δ |= x = y iff σ(x) = σ(y),

◮ t, σ, δ |= x < y iff σ(x) <prefix σ(y),

◮ t, σ, δ |= x ∈ X iff σ(x) ∈ δ(X),

◮ t, σ, δ |= Si(x, y) iff σ(y) = σ(x) · i,

◮ t, σ, δ |= La(x) iff t(σ(x)) = a i.e. σ(x) ∈ Lt
a,

◮ t, σ, δ |= φ1 ∧ φ2 iff t, σ, δ |= φ1 and t, σ, δ |= φ2,

◮ t, σ, δ |= φ1 ∨ φ2 iff t, σ, δ |= φ1 or t, σ, δ |= φ2,

◮ t, σ, δ |= ¬φ iff t, σ, δ 6|= φ,

WSkS: Semantics (Quantifiers)

◮ t, σ, δ |= ∃x φ iff x /∈ dom(σ), x free in φ
and exists p ∈ Pos(t) s.t. t, σ ∪ {x 7→ p}, δ |= φ,

◮ t, σ, δ |= ∀x φ iff x /∈ dom(σ), x free in φ
and for all p ∈ Pos(t), t, σ ∪ {x 7→ p}, δ |= φ,

◮ t, σ, δ |= ∃X φ iff X /∈ dom(δ), X free in φ
and exists P ⊆ Pos(t) s.t. t, σ, δ ∪ {X 7→ P} |= φ,

◮ t, σ, δ |= ∀X φ iff X /∈ dom(δ), X free in φ
and for all P ⊆ Pos(t), t, σ, δ ∪ {X 7→ P} |= φ.

WSkS: Languages

Definition : WSkS-definability

For φ ∈WSkS closed (without free variables) over LΣ,

L(φ) :=
{
t ∈ T (Σ)

∣
∣ t |= φ

}
.

Example :

Σ = {a : 2, b : 2, c : 0}. Language of terms in T (Σ)

◮ containing the pattern a(b(x1, x2), x3):
∃x∃y S1(x, y) ∧ La(x) ∧ Lb(y)

◮ such that every a-labelled node has a b-labelled child.
∀x∃y La(x)⇒

∨2
i=1 Si(x, y) ∧ Lb(y)

◮ such that every a-labelled node has a b-labelled descendant.
∀x∃y La(x)⇒ x < y ∧ Lb(y)

WSkS: Examples

◮ root position:

WSkS: Examples

◮ root position: root(x) ≡ ¬∃y y < x

◮ inclusion:

WSkS: Examples

◮ root position: root(x) ≡ ¬∃y y < x

◮ inclusion: X ⊆ Y ≡ ∀x(x ∈ X ⇒ x ∈ Y)

◮ intersection:

WSkS: Examples

◮ root position: root(x) ≡ ¬∃y y < x

◮ inclusion: X ⊆ Y ≡ ∀x(x ∈ X ⇒ x ∈ Y)

◮ intersection: Z = X ∩ Y ≡ ∀x (x ∈ Z ⇔ (x ∈ X ∧ x ∈ Y))

◮ emptiness:

WSkS: Examples

◮ root position: root(x) ≡ ¬∃y y < x

◮ inclusion: X ⊆ Y ≡ ∀x(x ∈ X ⇒ x ∈ Y)

◮ intersection: Z = X ∩ Y ≡ ∀x (x ∈ Z ⇔ (x ∈ X ∧ x ∈ Y))

◮ emptiness: X = ∅ ≡ ∀x x /∈ X

◮ finite union:

WSkS: Examples

◮ root position: root(x) ≡ ¬∃y y < x

◮ inclusion: X ⊆ Y ≡ ∀x(x ∈ X ⇒ x ∈ Y)

◮ intersection: Z = X ∩ Y ≡ ∀x (x ∈ Z ⇔ (x ∈ X ∧ x ∈ Y))

◮ emptiness: X = ∅ ≡ ∀x x /∈ X

◮ finite union:

X =

n⋃

i=1

Xi ≡
(

n∧

i=1

Xi ⊆ X
)
∧ ∀x

(
x ∈ X ⇒

n∨

i=1

x ∈ Xi

)

◮ partition:

WSkS: Examples

◮ root position: root(x) ≡ ¬∃y y < x

◮ inclusion: X ⊆ Y ≡ ∀x(x ∈ X ⇒ x ∈ Y)

◮ intersection: Z = X ∩ Y ≡ ∀x (x ∈ Z ⇔ (x ∈ X ∧ x ∈ Y))

◮ emptiness: X = ∅ ≡ ∀x x /∈ X

◮ finite union:

X =

n⋃

i=1

Xi ≡
(

n∧

i=1

Xi ⊆ X
)
∧ ∀x

(
x ∈ X ⇒

n∨

i=1

x ∈ Xi

)

◮ partition:

X1, . . . ,Xn partitionX ≡ X =

n⋃

i=1

Xi ∧
n−1∧

i=1

n∧

j=i+1

Xi ∩Xj = ∅

WSkS: Examples (2)

◮ singleton:

WSkS: Examples (2)

◮ singleton:
sing(X) ≡ X 6= ∅ ∧ ∀Y

(
Y ⊆ X ⇒ (Y = X ∨ Y = ∅)

)

◮ ≤ (without <)

WSkS: Examples (2)

◮ singleton:
sing(X) ≡ X 6= ∅ ∧ ∀Y

(
Y ⊆ X ⇒ (Y = X ∨ Y = ∅)

)

◮ ≤ (without <)

x ≤ y ≡ ∀X

y ∈ X

∧ ∀z ∀z′ (z′ ∈ X ∧
∨

i≤k

Si(z, z
′))⇒ z ∈ X

⇒ x ∈ X

or

x ≤ y ≡ ∃X
(
∀z z ∈ X ⇒ (∃z′

∨

i≤k

Si(z
′, z) ∧ z′ ∈ X) ∨ z = x

)

∧ y ∈ X

Thatcher & Wright’s Theorem

Theorem : Thatcher and Wright

Languages of WSkS formulae = regular tree languages.

pr.: 2 directions (2 constructions):

◮ TA → WSkS,

◮ WSkS → TA.

Plan

WSkS: Definition

Automata → Logic

Logic → Automata

Fragments and Extensions of WSkS

Regular Languages → WSkS Languages

Let Σ = {a1, . . . , an}.

Theorem :

For all tree automaton A over Σ, there exists φA ∈WSkS such that
L(φA) = L(A).

A = (Σ, Q,Qf ,∆) with Q = {q0, . . . , qm}.
φA: existence of an accepting run of A on t ∈ T (Σ).

φA := ∃Y0 . . . ∃Ym φlab(Y) ∧ φacc(Y) ∧ φtr0(Y) ∧ φtr(Y)

Regular Languages → WSkS Languages

φlab(Y): every position is labeled with one state exactely.

Regular Languages → WSkS Languages

φlab(Y): every position is labeled with one state exactely.

φlab(Y) ≡ ∀x
∨

0≤i≤m

x ∈ Yi ∧
∧

0≤i,j≤m

i 6=j

(
x ∈ Yi ⇒ ¬x ∈ Yj

)

Regular Languages → WSkS Languages

φlab(Y): every position is labeled with one state exactely.

φlab(Y) ≡ ∀x
∨

0≤i≤m

x ∈ Yi ∧
∧

0≤i,j≤m

i 6=j

(
x ∈ Yi ⇒ ¬x ∈ Yj

)

φacc(Y): the root is labeled with a final state

Regular Languages → WSkS Languages

φlab(Y): every position is labeled with one state exactely.

φlab(Y) ≡ ∀x
∨

0≤i≤m

x ∈ Yi ∧
∧

0≤i,j≤m

i 6=j

(
x ∈ Yi ⇒ ¬x ∈ Yj

)

φacc(Y): the root is labeled with a final state

φacc(Y) ≡ ∀x0 root(x0)⇒
∨

qi∈Qf

x0 ∈ Yi

Regular Languages → WSkS Languages

φtr0(Y): transitions for constants symbols

Regular Languages → WSkS Languages

φtr0(Y): transitions for constants symbols

φtr0(Y) ≡
∧

a∈Σ0

(

∀x La(x)⇒
∨

a→qi∈∆

x ∈ Yi
)

Regular Languages → WSkS Languages

φtr0(Y): transitions for constants symbols

φtr0(Y) ≡
∧

a∈Σ0

(

∀x La(x)⇒
∨

a→qi∈∆

x ∈ Yi
)

φtr(Y): transitions for non-constant symbols

Regular Languages → WSkS Languages

φtr0(Y): transitions for constants symbols

φtr0(Y) ≡
∧

a∈Σ0

(

∀x La(x)⇒
∨

a→qi∈∆

x ∈ Yi
)

φtr(Y): transitions for non-constant symbols

φtr(Y) ≡
∧

f∈Σj ,0<j≤k

∀x∀y1 . . . ∀yj

(
Lf (x) ∧ S1(x, y1) ∧ . . . ∧ Sj(x, yj)

)

⇓
∨

f(qi1 ,...,qij)→qi∈∆

x ∈ Yi ∧ y1 ∈ Yi1 ∧ . . . ∧ yj ∈ Yij

Plan

WSkS: Definition

Automata → Logic

Logic → Automata

Fragments and Extensions of WSkS

Thatcher & Wright’s Theorem

Theorem :

Every WSkS language is regular.

For all formula φ ∈WSkS over Σ (without free variables) there
exists a tree automaton Aφ over Σ, such that L(Aφ) = L(φ).

Corollary :

WSkS is decidable.

pr.: reduction to emptiness decision for Aφ.

Thatcher & Wright’s Theorem

Aφ is effectively constructed from φ, by induction.

◮ automata for atoms

⇒ need of automata for formula with free variables.

it will characterize

◮ Boolean closures for Boolean connectors.

◮ ∃ quantifier: projection.

Thatcher & Wright’s Theorem

When φ contains free variables, Aφ will characterize both terms
AND valuations satisfying φ: L(Aφ) ≡ {〈t, σ, δ〉 | t, σ, δ |= φ}.
Below we define the product 〈t, σ, δ〉.

X for free second order variables:

t ∈ T (Σ)

δ : {X1, . . . ,Xn} → 2Pos(t) 7→ t× δ ∈ T (Σ × {0, 1}n)

arity of 〈a, b〉 in Σ× {0, 1}n = arity of a in Σ.

for all p ∈ Pos(t), (t× δ)(p) = 〈t(p), b1, . . . , bn〉 where for all
i ≤ n,

◮ bi = 1 if p ∈ δ(Xi),

◮ bi = 0 otherwise.

X free first order variables are interpreted as singletons.

WSkS0

We consider a simplified language (wlog).

◮ no first order variables,

◮ only second order variables X,Y . . .,

◮ form ::= X ⊆ Y
∣
∣ Y = X · 1

∣
∣ . . .

∣
∣ Y = X · k

∣
∣ X ⊆ La a ∈ Σ
∣
∣ form ∧ form

∣
∣ form ∨ form

∣
∣ ¬form

∣
∣ ∃X form

∣
∣ ∀X form

interpretation Y = X · i: X = {x}, Y = {y} and y = x · i.

ex: singleton

WSkS0

We consider a simplified language (wlog).

◮ no first order variables,

◮ only second order variables X,Y . . .,

◮ form ::= X ⊆ Y
∣
∣ Y = X · 1

∣
∣ . . .

∣
∣ Y = X · k

∣
∣ X ⊆ La a ∈ Σ
∣
∣ form ∧ form

∣
∣ form ∨ form

∣
∣ ¬form

∣
∣ ∃X form

∣
∣ ∀X form

interpretation Y = X · i: X = {x}, Y = {y} and y = x · i.

ex: singleton
singleton(X) ≡ ∃Y

(
Y ⊆ X ∧ Y 6= X∧
¬∃Z (Z ⊆ X ∧ Z 6= X ∧ Z 6= Y)

)

WSkS→ WSkS0

Lemma :

For all formula φ(x1, . . . , xm,X1, . . . ,Xn) ∈WSkS,
there exists a formula φ′(X ′

1, . . . ,X
′
m,X1, . . . ,Xn) ∈WSkS0

s.t. t, σ, δ |= φ(x1, . . . , xm,X1, . . . ,Xn)
iff t, σ′∪δ |= φ′(X ′

1, . . . ,X
′
m,X1, . . . ,Xn), with σ

′ : X ′
i 7→ {σ(xi)}.

pr.: several steps of formula rewriting:

1. elimination of <,

2. elimination of Si(x, y) (i ≤ k), La(x) (a ∈ Σ),

elimination of first order variables (use singleton(X)).

Compilation of WSkS0 into Automata

notation: Σ[m] := Σ× {0, 1}m.

For all φ(X1, . . . ,Xn) ∈WSkS0 and m ≥ n,
we construct a tree automaton JφKm over Σ[m] recognizing

{
t× δ | δ : {X1, . . . ,Xm} → 2Pos(t), t, δ |= φ(X1, . . . ,Xn)

}

Projection, Cylindrification

projection
proj n :

⋃

m≥n T (Σ[m])→ T (Σ[n])

delete components n+ 1, . . . ,m.

Lemma : projection

For all n ≤ m, if L ⊆ T (Σ[m]) is regular then proj n(L) is regular.

cylindrification (m ≥ n)
cyln,m : L ⊆ T (Σ[n]) 7→ {t ∈ T (Σ[m]) | proj n(t) ∈ L}

Lemma : cylindrification

For all n ≤ m, if L ⊆ T (Σ[n]) is regular, then cyln,m(L) is regular.

Compilation: X1 ⊆ X2

Automaton JX1 ⊆ X2K2:

◮ signature Σ[2] = Σ× {0, 1}2.

Compilation: X1 ⊆ X2

Automaton JX1 ⊆ X2K2:

◮ signature Σ[2] = Σ× {0, 1}2.

◮ states: q0

◮ final states: q0

◮ transitions:
〈a, 0, 0〉(q0, . . . , q0) → q0
〈a, 0, 1〉(q0, . . . , q0) → q0
〈a, 1, 1〉(q0, . . . , q0) → q0

For m ≥ 2,

JX1 ⊆ X2Km := cyl2,m
(
JX1 ⊆ X2K2

)

Compilation: X1 = X2 · 1

Automaton JX1 = X2 · 1K2:

◮ signature Σ[2] = Σ× {0, 1}2.

Compilation: X1 = X2 · 1

Automaton JX1 = X2 · 1K2:

◮ signature Σ[2] = Σ× {0, 1}2.

◮ states: q0, q1, q2

◮ final states: q2

◮ transitions:
〈a, 0, 0〉(q0, . . . , q0) → q0
〈a, 1, 0〉(q0, . . . , q0) → q1
〈a, 0, 1〉(q1, q0, . . . , q0) → q2
〈a, 0, 0〉(q0, . . . , q0, q2, q0, . . . , q0) → q2

For m ≥ 2,

JX2 = X1 · 1Km := cyl2,m
(
JX2 = X1 · 1K2

)

Compilation: X1 ⊆ La

Automate JX1 ⊆ LaK1:

◮ signature Σ[2] = Σ× {0, 1}2.

Compilation: X1 ⊆ La

Automate JX1 ⊆ LaK1:

◮ signature Σ[2] = Σ× {0, 1}2.

◮ states: q0

◮ final states: q0

◮ transitions:
〈a, 0〉(q0, . . . , q0) → q0
〈b, 0〉(q0, . . . , q0) → q0 (b 6= a)
〈a, 1〉(q0, . . . , q0) → q0

For m ≥ 1,

JX1 ⊆ LaKm := cyl1,m
(
JX1 ⊆ LaK1

)

Compilation: Boolean Connectors

◮ Jφ(X1, . . . ,Xn) ∨ φ(X1, . . . ,Xn′)Km :=
Jφ(X1, . . . ,Xn)Km ∪ Jφ(X1, . . . ,Xn′)Km
with m ≥ max(n, n′)

◮ Jφ(X1, . . . ,Xn) ∧ φ(X1, . . . ,Xn′)Km :=
Jφ(X1, . . . ,Xn)Km ∩ Jφ(X1, . . . ,Xn′)Km
with m ≥ max(n, n′)

◮ J¬φ(X1, . . . ,Xn)Km := T (Σ[m]) \ Jφ(X1, . . . ,Xn)Km
for m ≥ n.

Compilation: Quantifiers

◮ J∃Xn+1 φ(X1, . . . ,Xn+1)Kn := proj n
(
Jφ(X1, . . . ,Xn+1)Kn+1

)

◮ NB: this construction does not preserve determinism.

◮ J∃Xn+1 φ(X1, . . . ,Xn+1)Km :=
cyln,m

(
J∃Xn+1 φ(X1, . . . ,Xn+1)Kn

)
for m ≥ n.

◮ ∀ = ¬∃¬

Thatcher & Wright’s Theorem

Theorem :

For all formula φ ∈ WSkS0 over Σ without free variables, there
exists a tree automaton Aφ over Σ, such that L(Aφ) = L(φ).

Aφ = JφK0 can be computed explicitely!

Corollary :

For all formula φ ∈WSkS over Σ without free variables there exists
a tree automaton Aφ over Σ, such that L(Aφ) = L(φ).

using translation of WSkS into WSkS0 first.

Size of Aφ

Theorem : Stockmeyer and Meyer 1973

For all n there exists ∃x1¬∃y1∃x2¬∃y2 . . . ∃xn¬∃yn φ ∈ FOL such
that for every automaton A recognizing the same language

size(A) ≥ 22
...2

size(φ)
}

n

Plan

WSkS: Definition

Automata → Logic

Logic → Automata

Fragments and Extensions of WSkS

WSkS and FO

Using the 2 directions of the Thatcher & Wright theorem:

WSkS ∋ φ 7→ A 7→ ∃Y1 . . . ∃Yn ψ

with ψ ∈ FOL.

Corollary :

Every WSkS formula is equivalent to a formula
∃Y1 . . . ∃Yn ψ with ψ first order.

FO (WSkS

Proposition :

The language L of terms with an even number of nodes labeled by
a is regular (hence WSkS-definable) but not FO-definable.

pr.: with Ehrenfeucht-Fräıssé games.

Ehrenfeucht-Fräıssé Games

goal: prove FO equivalence of finite structures
(wrt finite set of predicates L).

Definition

for two finite L-structures A and B A ≡m B iff for all φ closed, of
quantifier depth m, A |= φ iff B |= φ

Ehrenfeucht-Fräıssé Games

Gm(A,B)

1 Spoiler chooses a1 ∈ dom(A) or b1 ∈ dom(B)

1′ Duplicator chooses b1 ∈ dom(B) or a1 ∈ dom(A)
...

m′ Duplicator chooses bm ∈ dom(B) or am ∈ dom(A)

Duplicator wins if {a1 7→ b1, . . . , am 7→ bm} is an injective partial
function compatible with the relations of A and B (∀P ∈ P,
PA(ai1 , . . . , ain) iff P

B(bi1 , . . . , bin))
= partial isomorphism.
Otherwise Spoiler wins.

Theorem : Ehrenfeucht-Fräıssé

A ≡m B iff Duplicator has a winning strategy for Gm(A,B).

Ehrenfeucht-Fräıssé Theorem

more generally: equivalence of finite structures + valuation of n
free variables.

for two finite L-structures A and B and
α1, . . . , αn ∈ dom(A), β1, . . . , βn ∈ dom(B), m ≥ 0,

A, α1, . . . , αn ≡m B, β1, . . . , βn

iff for all φ(x1, . . . , xn) of quantifier depth m,

A, σa |= φ(x) iff B, σb |= φ(x)

where σa = {x1 7→ α1, . . . , xn 7→ αn},
σb = {x1 7→ β1, . . . , xn 7→ βn}.

Games: the partial isomorphisms must extend
{α1 7→ β1, . . . , αn 7→ βn}.

FO (WSkS

let Σ = {a : 1,⊥ : 0}.

Lemma :

For all m ≥ 3 and all i, j ≥ 2m − 1,
Duplicator has a winning strategy for Gm(ai(⊥), aj(⊥)).

Corollary :

The language L ⊆ T (Σ) of terms with an even number of nodes
labeled by a is not FO-definable.

◮ Star-free languages = FO definable holds for words
[McNaughton Papert] but not for trees.

◮ It is an active field of research to characterize regular tree
languages definable in FO.
e.g. [Benedikt Segoufin 05] ≈ locally threshold testable.

Restriction to Antichains

Definition :

An antichain is a subset P ⊆ Pos(t) s.t. ∀p, p′ ∈ P ,
p 6< p′ and p 6> p′.

antichain-WSkS: second-order quantifications are restricted to
antichains.

Theorem :

If Σ1 = ∅, the classes of antichain-WSkS languages and regular
languages over Σ conincide.

Theorem :

chain-WSkS is strictly weaker than WSkS.

MSO on Graphs

Weak second-order monadic theory of the grid
Σ finite alphabet,

Lgrid := {=, S→, S↑, La

∣
∣ a ∈ Σ}

Grid G : N× N→ Σ; Interpretation structure:

G := 〈N× N,=, x+ 1, y + 1, LG
a , L

G
b , . . .〉.

Proposition :

The weak monadic second-order theory of the grid is undecidable.

csq: weak MSO of graphs is undecidable.

MSO on Graphs (Remarks)

◮ algebraic framework [Courcelle]:
MSO decidable on graphs generated by a hedge replacement
graph grammar = least solutions of equational systems based
on graph operations: ‖ : 2, exchi,j : 1, forget i : 1, edge : 0,
ver : 0.

◮ related notion: graphs with bounded tree width.

◮ FO-definable sets of graphs of bounded degree = locally
threshold testable graphs (some local neighborhood appears n
times with n < threshold - fixed).

Undecidable Extensions

Left concatenation: new predicate

S′
1 =

{
〈p, 1 · p〉 | p, 1 · p ∈ Pos(t)

}

Proposition :

WS2S + left concatenation predicate is undecidable.

Predicate of equal length.

Proposition :

WS2S + |x| = |y| is undecidable.

MONA

[Klarlund et al 01]
http://www.brics.dk/mona/

◮ decision procedures for WS1S and WS2S

◮ by translation of formulas into automata

http://www.brics.dk/mona/

Part III

Automata for Unranked Trees

Plan

Unranked Trees and Reasoning Tasks over XML Documents
XML Processing

Automata for Unranked Ordered Trees

Automata for Unranked Unordered Trees

Automata for Unranked Mixed Trees

Regular Languages modulo Associativity and Commutativity

Verification of XML Updates

Automata for

◮ ranked terms = first order terms over a signature

◦ every symbols has a fixed arity

→ functional program analysis

◮ unranked terms = finite trees (directed, rooted) labelled over
a finite alphabet

◦ one node can have arbitrarily (though finitely) many childrens

◦ the number of children of a node does not depend on its label

→ Web data, regular term languages modulo A and AC

A Brief History of Tree Automata

◮ 60’s 70’s, logic for computer science
[Thatcher 67], [Takachi 75]: unranked labeled trees

◮ end of 80’s: application to automated deduction
[Dauchet Tison et al] (ranked trees = terms)

◮ 90’s feature trees over infinite set of features: unranked trees
[Smolka 92] – applications to computational linguistic
[Blackburn 94], [Carpenter 92].

◮ 2000 and later: XML processing - unranked trees
[Vianu CSL 01], [Schwentick 07].

Imperative Program

[Bouajjani Touili CAV 02]

void X() {

while(true) {

if Y() {

thread_create(&t1,Z)

} else { return }

}

}

X → Y · X (r1)
Y → t (r2)
Y → f (r3)
t · X → X ‖ Z (r4)
f → 0 (r5)

Reachability analysis:

◮ The set of reachable terms is regular, but

◮ we want · Associative,

◮ and ‖ Associative and Commutative,

◮ and regular term languages are not closed modulo A and AC.

→ consider unranked trees as representative.

Web data (XML Document)

<rss version="2.0">

<title>My blog</title>

<link>http://myblog.blogspot.com</link>

<description>bla bla bla</description>

<item>

<title>Concert</title>

<link>http://myblog.blogspot.com/me/Mon blog/...</link>

<guid>5f7da0aa-a593-4a2e</guid>

<pubDate>Fri, 21 Mar 2009 14:40:02 +0100</pubDate>

<description>...</description>

<image href="..."></image>

<comment link="..." count="0" enabled="0">...</comment>

</item>

<item>

<title>Journée de surf</title>

...

</item>

</rss>

Web Data

rss

title

. . .

link

. . .

desc

. . .

item

title

. . .

link

. . .

guid

. . .

pubDate

. . .

desc

. . .

image

. . .

comment

. . .

item

. . .

HTML Document

<html>

<head>...</head>

<body>

<h1>...</h1>

<table>

<tr>

<td>...</td>

<td>...</td>

</tr>

<tr>

<td>...</td>

</tr>

<tr>

<td>...</td>

</tr>

</table>

</body>

</html>

html

head

. . .

body

h1

. . .

table

tr

td

. . .

td

. . .

tr

td

. . .

tr

td

. . .

XML Document Types

documents = unranked trees

conformity / validation

◮ class of documents with a predefined structure
(valid documents)

<table>

<tr> <td> c11 </td> <td> c12 </td> </tr>

<tr> <td> c21 </td> <td> c22 </td> </tr>

</table>

◮ defined by a schema (DTD, XML schema, Relax NG...)
= tree language

◮ All the schema formalisms in use currently correspond to tree
automata [Schwentick JCSS 07] [Murata et al 05].

Reasoning Tasks over XML Documents

◮ type definitions (DTD, XML schema, Relax NG...) ⊆
automata

◦ validation = membership problem
◦ schema entailment = inclusion problems

◮ querying

◦ query satisfiability = emptiness problem

◮ integrity constraints (keys, inclusion):

◦ consistency [Fan Libkin JACM 02]

◮ unranked tree transformations

◦ type checking
given Lin, regular input language

T transformation (in XSLT...)
Lout regular output language

question: do we have T (Lin) ⊆ Lout?

Plan

Unranked Trees and Reasoning Tasks over XML Documents

Automata for Unranked Ordered Trees
Unranked Ordered Trees
Hedge Automata, Determinism
Decision Problems
Binary Encoding
Boolean Closure
Minimization

Automata for Unranked Unordered Trees

Automata for Unranked Mixed Trees

Regular Languages modulo Associativity and Commutativity

Verification of XML Updates

Unranked Ordered Trees

◮ Σ is a finite alphabet.

tree := a(hedge) (a ∈ Σ)
hedge := tree∗

◮ a hedge can be empty. a() is denoted by a.

◮ The set of all unranked ordered trees over Σ is denoted O(Σ).

◮ The set of hedges over Σ is denoted H(Σ).

◮ set of positions ⊂ N∗: as for terms.

Example: Tree of O(Σ)

html

head

a

body

h1

b

table

tr

td

c1

td

c2

tr

td

d

tr

td

e
positions:

ε

1

11

2

21

211

22

221

2211

22111

2212

22121

222

2221

22211

223

2231

22311

Example: Language ⊆ O(Σ)

◮ Σ = {a, b}.
◮ L := terms of O(Σ)

◮ height at most 1,
◮ root is labelled by a,
◮ even number of leaves, all leaves labelled by b.

◮ L = {a, a(bb), a(bbbb), ...}.

◮ finite description: L = a
(
(bb)∗

)

Hedge Automata (HA)

Definition : Hedge Automata

A Hedge Automaton (HA) over an alphabet Σ is a tuple A =
(Σ, Q,Qf ,∆) where Q is a finite set of states, Qf ⊆ Q is the sub-
set of final states and ∆ is a set of transition rules of the form:
a(L)→ q with a ∈ Σ and L ⊆ Q∗ is a regular language.

A run of A on t ∈ O(Σ) is a tree r ∈ O(Q) such that

◮ r and t have the same domain,

◮ for all p ∈ Pos(t), with t(p) = a, r(p) = q, there exists
a(L)→ q ∈ ∆ such that r(p1) . . . r(pn) ∈ L, where n is the
number of successors of p in Pos(t).

The run r is accepting (successful) iff r(ε) ∈ Qf .

HA Languages

◮ language of A: L(A) is the set of terms on which there exists
an accepting run of A,

◮ language of A in state q ∈ Q: L(A, q) is the set of terms t
such that there exists a run r of A on t with r(ε) = q,

◮ L(A) =
⋃

q∈Qf

L(A, q).

◮ equivalently, L(A, q) is the smallest set of terms
a(t1, . . . , tn) ∈ O(Σ) (n ≥ 0) such that there exists a
transition a(L)→ q, and states q1, . . . , qn ∈ Q with
ti ∈ L(A, qi) s.t. i ≤ n and q1 . . . qn ∈ L.

HA Language: Example 1

◮ Σ = {a, b}.
◮ L := terms of O(Σ)

◮ height 1,
◮ root is labelled by a,
◮ even number of leaves, all leaves labelled by b.

◮ L = {a, a(bb), a(bbbb), ...}.

◮ finite description: L = L(A) with
A :=

(
Σ, {qa, qb}, {qa}, {b→ qb, a((qbqb)

∗)→ qa}
)
.

Boolean Expressions with Variadic ∧ and ∨

◮ Σ = {∧,∨, 0, 1},

◮ states {q0, q1},

◮ transitions:

0 → q0 1 → q1
∧(q∗1 q0 (q0

∣
∣ q1)

∗) → q0 ∧(q1 q
∗
1) → q1

∨(q0 q
∗
0) → q0 ∨(q∗0 q1 (q0

∣
∣ q1)

∗) → q1
¬(q0) → q1 ¬(q1) → q0

◮ example: Boolean expression and associated run

∨

∨

1 0

∧

1 0 1

∨

0 0 0

q1

q1

q1 q0

q0

q1 q0 q1

q0

q0 q0 q0

HA Language: Example 3

◮ Σ = {a, b, c}.
◮ L := terms of O(Σ)

◮ with 2 b’s at positions p1 and p2, and
◮ one c on the smallest common ancestor of p1 and p2.

a

c

a b a

c b

b

a c a

HA Language: Example 3

◮ Σ = {a, b, c}.
◮ L := terms of O(Σ)

◮ with 2 b’s at positions p1 and p2, and
◮ one c on the smallest common ancestor of p1 and p2.

A = (Σ, Q,Qf ,∆), avec Q = {q, qb, qc}, Q
f = {qc}, ∆ =

a(Q∗) → q
b(Q∗) → qb
c(Q∗) → q

a(Q∗qbQ
∗) → qb

c(Q∗qbQ
∗) → qb

c(Q∗qbQ
∗qbQ

∗) → qc

a(Q∗qcQ
∗) → qc

b(Q∗qcQ
∗) → qc

c(Q∗qcQ
∗) → qc

a

c

a b a

c b

b

a c a

qc

qc

q qb qb

q qb

qb

q q q

Normalized Hedge Automata

Definition :

A HA A = (Σ, Q,Qf ,∆) over Σ is called normalized if
for all a ∈ Σ and q ∈ Q, there is at most one transition of the form
a(L)→ q in ∆.

When A is normalized, we denote a(La,q)→ q the unique
transition with a and q.

Proposition :

For all HA A, there exista a normalized HA An recognizing the same
language.

The size of An is linear in the size of A.

Complete and Deterministic Hedge Automata

Semantical definitions

Definition :

A HA A = (Σ, Q,Qf ,∆) over Σ is complete if for all t ∈ O(Σ),
there exists at least one state q ∈ Q s.t. t ∈ L(A, q).

Definition :

A HA A = (Σ, Q,Qf ,∆) over Σ is deterministic if for all t ∈ O(Σ),
there exists at most one state q ∈ Q s.t. t ∈ L(A, q).

Complete and Deterministic Hedge Automata

Syntactical definitions

Definition :

A HA A = (Σ, Q,Qf ,∆) over Σ is complete if
for all a ∈ Σ and all finite sequence q1, . . . , qn ∈ Q

∗,
there exists a transition a(L)→ q ∈ ∆ with q1 . . . qn ∈ L.

Definition :

A HA A = (Σ, Q,Qf ,∆) over Σ is deterministic if
for all transitions a(L1)→ q1 and a(L2)→ q2 in ∆,
either L1 ∩ L2 = ∅, or q1 = q2.

Determinism: Examples

HA for Boolean expressions evaluation : deterministic.
Σ = {∧,∨, 0, 1}, Q = {q0, q1} et ∆:

0 → q0 1 → q1
∧(q∗1 q0 (q0

∣
∣ q1)

∗) → q0 ∧(q1q
∗
1) → q1

∨(q0q
∗
0) → q0 ∨(q∗0 q1 (q0

∣
∣ q1)

∗) → q1

Language with 2 b’s and common ancestor c: not deterministic.
Σ = {a, b, c}, Q = {q, qb, qc}, Q

f = {qc}, ∆:

a(Q∗) → q
b(Q∗) → qb
c(Q∗) → q

a(Q∗qbQ
∗) → qb

c(Q∗qbQ
∗) → qb

c(Q∗qbQ
∗qbQ

∗) → qc

a(Q∗qcQ
∗) → qc

b(Q∗qcQ
∗) → qc

c(Q∗qcQ
∗) → qc

HA Completion

Proposition :

For all HA A, there exists a complete HA Ac recognizing the same
language.

The size of Ac is linear is the size of A.

HA Completion

Proposition :

For all HA A, there exists a complete HA Ac recognizing the same
language.

The size of Ac is linear is the size of A.

pr.: add a trash state q⊥ and transitions :

a
(⋂

q∈Q

Q∗ \ La,q ∪Q
∗
⊥q⊥Q

∗
⊥

)
→ q⊥

HA Determinization

Proposition :

For all HA A, there exists a deterministic HA Ad recognizing the
same language.

The size of Ad is exponential in the size of A (lower bound).
pr.: subset construction

HA Determinization

Proposition :

For all HA A, there exists a deterministic HA Ad recognizing the
same language.

The size of Ad is exponential in the size of A (lower bound).
pr.: subset construction for A = (Q,Qf ,∆) (normalised):

◮ Ad =
(
2Q, Qf ,∆d

)
,

◮ Qf = {S ⊆ Q
∣
∣ S ∩Qf 6= ∅}

◮ ∆d: a(La,S)→ S (S ⊆ Q)

La,S =
⋂

q∈S

Sa,q \
⋃

q /∈S

Sa,q

with
Sa,q = {S1 . . . Sn ∈ Q

∗
d

∣
∣ ∃q1 ∈ S1, . . . ,∃qn ∈ Sn, q1 . . . qn ∈ La,q}

HA: Membership Decision

Proposition : ∈

The problem of membership is decidable in polynomial time for the
HAs whose languages La,q are given by NFAs.

◮ linear time for DHA whose languages La,q are given by DFA,

◮ NP-complete if the languages La,q are given by alternating
automata.

HA: Emptiness Decision

Proposition : ∅

The problem of emptiness is decidable in polynomial time for HAs
whose languages La,q are given by NFAs.

pr.: state marking. M ⊆ Q,

◮ initialy, M = ∅.

◮ at each step , if a(La,q)→ q ∈ ∆ and La,q ∩M
∗ 6= ∅

then M :=M ∪ {q}.

◮ PSPACE-complete if the languages La,q are given by
alternating automata.

HA: Decision of Inclusion and Equivalence

Proposition : ⊆, ≡

The problem of inclusion (resp. equivalence) is EXPTIME-complete
for HAs whose languages La,q are given by NFAs.

pr.: L(A1) ⊆ L(A2) iff L(A1) ∩ (O(Σ) \ L(A2)) = ∅.

◮ in PTIME for DHAs whose languages La,q are given by DFAs.

◮ PSPACE-complete for DHAs whose languages La,q are given
by alternating automata.

Currying

Transformation into binary trees with @ and constants.

We associate the following signature to an alphabet Σ:

Σ@ := {a : 0
∣
∣ a ∈ Σ} ∪ {@ : 2}

The function curry : O(Σ)→ T (Σ@), is defined recursively:

◮ curry(a) := a,

◮ curry
(
a(t1, . . . , tn)

)
:= @

(
curry

(
a(t1, . . . , tn−1)

)
, curry(tn)

)
.

Currying: Example 1

◮ curry(a) = a,

◮ curry
(
a(t1, . . . , tn)

)
= @

(
curry

(
a(t1, . . . , tn−1)

)
, curry(tn)

)

a

b

c

d f

g h

7→curry @

@

@

a @

b c

d

@

@

f g

h

Currying: Example 2

◮ curry(a) = a,

◮ curry
(
a(t1, . . . , tn)

)
= @

(
curry

(
a(t1, . . . , tn−1)

)
, curry(tn)

)

transforming unranked Boolean expressions into binary.

∨

∨

1 0

∧

1 0 1

∨

0 0 0

7→curry @

@

@

∨ @

@

∨ 1

0

@

@

@

∧ 1

0

1

@

@

@

∨ 0

0

0

Currying: Properties

Lemma :

curry is a bijection from O(Σ) into T (Σ@).

Proposition :

L ⊆ O(Σ) is a HA language iff curry(L) is regular.

pr.:: Let A = 〈Q,Qf ,∆〉 normalized HA, and
Ba,q = 〈Pa,q, inita,q, Fa,q, Ra,q〉 be a NFA recognizing La,q f.a.
a ∈ Σ, q ∈ Q, a(La,q)→ q ∈ ∆.
curry(A) = 〈Q ∪

⋃

a,q Pa,q, Q
f ,∆′〉 where ∆′ contains:

a→ q if Ba,q recognizes the empty word,

a→ inita,q for all q ∈ Q,

@(p, q)→ p′ if there is a transition p −→q p′ in some Ba′,q′ , and

@(p, q)→ q′ if there is a transition p −→q p′ in some Ba′,q′ and
p′ ∈ Fa′,q′ .

HA: Boolean Operations

Proposition :

The class of HA languages is closed under union, intersection and
complement.

pr.: curry(L1 ∪ L2) = curry(L1) ∪ curry(L2)
Hence we can reuse the construction for ranked TA
L1 ∪ L2 = curry−1(curry(L1) ∪ curry(L2))

HA: Closure under Morphisms

projection h : O(Σ)→ O(Σ′), defined by extension to trees of an
application h : Σ→ Σ′.

h(L) = {h(t) | t ∈ L} and h−1(L′) = {t ∈ O(Σ) | h(t) ∈ L′}

Proposition :

The class of HA languages is closed under projections and inverse
projections.

pr.: it follows form the closure of regular ranked tree languages
under linear morphisms and inverses morphisms.

Minimization

Definition of minimal deterministic HA:
2 questions must be addressed

1. for which definition of determinism?
(minimization makes sense only for deterministic automata)

2. what to minimize?

Minimization

For ranked tree automata, the answer to both questions is clear:

1. ranked DTA: every step of computation is deterministic

2. we want to minimize the number of states

For unranked tree automata, this is not so clear:

1. even for DHA[DFA] (DHA whose horizontal languages are
defined by DFA), if we have a(L)→ q and a(L′)→ q′ and
L ∩ L′ = ∅, in configuration a(q1 . . . qn) we must test both
q1 . . . qn ∈ L and q1 . . . qn ∈ L

′ before firing the right
transition. Which one is tested first?
In the construction of a TA for curry(HA), we choose ND.

2. there are states for the DHA and for the DFAs for the
horizontal languages.

Minimization of DHA

First approach: we ignore the formalism for horizontal languages,
i.e. we chose

1. DFAs (whatever for the horizontal automata)

2. number of states of the DFA

Congruence of a language L ⊆ O(Σ):

s ≡L t iff ∀C C[s] ∈ L⇔ C[t] ∈ L

Minimal DHA for the HA language L:

◮ states:
{
[t]≡L

| t ∈ O(Σ)
}
,

◮ final states:
{
[t]≡L

| t ∈ L
}
(we simply write [t] below),

◮ transitions:
{
a(La,[t])→ [t] | La,[t] = {[t1] . . . [tn] | a(t1 . . . tn) ≡L t}

}
,

Minimization of DHA (2)

2 drawbacks for the first approach

◮ the complexity of the effective construction depends on the
formalism for horizontal languages.

◮ no analogous of Myhill-Nerode theorem for DFA or DTA
(ranked):

L is an HA language ⇒ ≡L has finite index
L is an HA language 6⇐ ≡L has finite index

Minimization of DHA[DTA]

Second approach: we consider both vertical and horizontal states
and transitions, i.e. we chose

1. DFA[DTA] (DHA whose horizontal language are defined by
disjoint DFAs)

2. number of states of the DFA + number of states of the
horizontal (disjoint) DTAs

Minimization of DHA[DTA] (2)

first idea: use the curry encoding and minimize the ranked TA.

problem: the TA associated to an HA wrt curry is not
deterministic; we have a→ inita,q for all q ∈ Q.
other question: uniqueness of minimal automaton?

→ stepwise automata [Niehren et al 04]:
one unique transition from each a ∈ Σ to the start state of a
deterministic machine that will read the state sequence below a
and output a state.

Moreover, vertical states = horizontal states.

Deterministic Stepwise Automata

Definition : stepwise automata

A deterministic stepwise hedge automaton (DSHA) is a tuple A =
(Σ, Q,Qf , δ0, δ), where Σ, Q, and Qf are as usual, δ0 : Σ → Q is
a function assigning to each letter of the alphabet an initial state,
and δ : Q×Q→ Q is the transition function.

For a ∈ Σ, δa : Q∗ → Q
δa(ε) = δ0(a)

δa(w · q) = δ(δa(w), q)

A run of A on t ∈ O(Σ) is a tree r ∈ O(Q) such that

◮ r and t have the same domain,

◮ for all p ∈ Pos(t), r(p) = δt(p)(r(p1) . . . r(pn)), where n is
the number of successors of p in Pos(t).

The run r is accepting (successful) iff r(ε) ∈ Qf .

Stepwise Automata & Ranked TA

stepwise ranked
DSHA A DTA curry(A)
δ0(a) = q a→ q
δ(q1, q2) = q @(q1, q2)→ q

Lemma :

For all t, t′ ∈ O(Σ) and q, q′ ∈ Q,
if t ∈ L(A, q) and t′ ∈ L(A, q′), then t@ t′ ∈ L(A, δ(q, q′)).

Lemma :

For all DSHA A, curry(L(A)) = L(curry(A)).

Minimal Stepwise Automata

Corollary :

DSHA recognize all HA unranked tree languages.

Corollary :

For each HA language L ⊆ O(Σ) there is a unique (up to renaming
of states) minimal DSHA accepting L.

Plan

Unranked Trees and Reasoning Tasks over XML Documents

Automata for Unranked Ordered Trees

Automata for Unranked Unordered Trees
Unranked Unordered Trees
Presburger Arithmetic
Presburger Automata (PA)
Determinism
Boolean Closure
Decision Problems
Weak Second Order Monadic Logic PMSO

Automata for Unranked Mixed Trees

Regular Languages modulo Associativity and Commutativity

◮ previous part: unranked ordered trees

◦ XML documents
◦ hedge automata (HA)
◦ see TATA book http://tata.gforge.inria.fr chapter 8

◮ this part: unranked unordered trees

◦ web data
◦ Presburger automata (PA)
◦ see [Seidl, Schwentick, Muscholl. Numerical Document

Queries. PODS 03]

http://tata.gforge.inria.fr

Unranked Unordered Trees

◮ Σ is a finite alphabet.

tree := a(multiset) (a ∈ Σ)
multiset := {tree, . . . , tree}

◮ a
(
{t1, . . . , tn}

)
is denoted a(t1, . . . , tn).

◮ rem: the multiset can be empty. a(∅) is denoted a.

◮ The set of unranked unordered trees over Σ is denoted U(Σ).

Examples of Languages of Trees of U(Σ)

◮ Σ = {a, b}.
◮ terms of U(Σ)

◮ of height 1,
◮ with one b at the root,
◮ the leaves are a or b:
i. with an even number of a (∈ HA),
ii. with the same number of a than b (/∈ HA).

Presburger Arithmetic

Presburger Formulae:

term ::= x (first order variables)
∣
∣ n (natural number)
∣
∣ term+ term

form ::= term = term
∣
∣ ¬form

∣
∣ form ∨ form

∣
∣ form ∧ form

∣
∣ ∀x form

∣
∣ ∃x form

Interpretation in the domain of natural numbers.
(n1, . . . , np) |= φ(x1, . . . , xp) (x1, . . . , xp free variables)
iff φ(n1, . . . , np) is evaluated to true.

Presburger Arithmetic

◮ notation: terms nx for x+ . . . + x
︸ ︷︷ ︸

n

,

◮ the natural can be restricted to 0 and 1,

◮ the atoms can be restricted to x = n and x = y + z.

Examples:

◮ x ≤ y

Presburger Arithmetic

◮ notation: terms nx for x+ . . . + x
︸ ︷︷ ︸

n

,

◮ the natural can be restricted to 0 and 1,

◮ the atoms can be restricted to x = n and x = y + z.

Examples:

◮ x ≤ y ≡ ∃x′ y = x+ x′.

◮ odd(x)

Presburger Arithmetic

◮ notation: terms nx for x+ . . . + x
︸ ︷︷ ︸

n

,

◮ the natural can be restricted to 0 and 1,

◮ the atoms can be restricted to x = n and x = y + z.

Examples:

◮ x ≤ y ≡ ∃x′ y = x+ x′.

◮ odd(x) ≡ ∃y x = y + y + 1.

Presburger Arithmetic

Theorem : Presburger Arithmetic

Presburger Arithmetic is decidable.

◮ lower bound 2-EXPTIME (Fischer and Rabin 1974)

◮ upper bound 3-EXPTIME (Klaedtke 2004, with an automata
construction)

◮ NP-complete for the existential fragment.

Presburger Arithmetic

Decidability of Presburger Arithmetic.

We can associate to a formula φ(x1, . . . , xp) a finite automaton
over the alphabet {0, 1}p recognizing the set of
〈b1,1, . . . , bp,1〉 . . . 〈b1,k, . . . , bp,k〉 such that
b1,1 . . . b1,k, . . . , bp,1 . . . bp,k are the binary representations of
integers n1, . . . , np satisfying φ.

Hence we can decide wether there exists n1, . . . , np such that
(n1, . . . , np) |= φ(x1, . . . , xp).

Presburger Arithmetic and Automata

finite automaton for x1 + x2 = x3

0 1

〈0, 0, 0〉
〈0, 1, 1〉
〈1, 0, 1〉

〈1, 1, 0〉

〈0, 0, 1〉

〈0, 1, 0〉
〈1, 0, 0〉
〈1, 1, 1〉

Parikh Projection
Σ = {a1, . . . , ap}.

Definition : Parikh Projection

The Parikh projection of a word w ∈ Σ∗ is the tuple #(w) :=
(m1, . . . ,mp) where mi (i≤p) is the number of occurrences of ai
in w.

For a set L ⊆ Σ∗, we denote #(L) := {#(w)
∣
∣ w ∈ L}.

Theorem :

For all context-free language L ⊆ Σ∗, there exists a Pres-
burger formula φ(x1, . . . , xp) such that #(L) := {(n1, . . . , np) |=
φ(x1, . . . , xp)}.

When L is regular, the Presburger formula is computed in linear
time (in the size of the NFA defining L).

Theorem :

For all Presburger formula φ(x1, . . . , xp), one can build a NFA A
such that #

(
L(A)

)
= {(n1, . . . , nk) |= φ(x1, . . . , xk)}.

Semi-linear sets

Definition :
◮ A linear set is a subset of Np of the form

{
v0 + v1 + . . . + vm

∣
∣ m ≥ 0, v1, . . . , vm ∈ B

}
,

for v0 ∈ Np and B ⊂ Np finite (fixed).

◮ A semi-linear set is a finite union of linear sets.

Theorem : Parikh

Models of Presburger formulae ≡ semi-linear sets.

Presburger Automata (PA)

Definition : Presburger Automata

A Presburger Automaton (PA) over an alphabet Σ is a tuple A =
(Σ, Q,Qf ,∆) where Q = {q1, . . . , qp} is a finite set od states, Qf ⊆
Q is the subset of final states and ∆ is a set of transition rules of
the form: a(φ)→ q with a ∈ Σ, q ∈ Q, and φ = φ(x1, . . . , xp) is a
Presburger formula with one free variable xi for each state qi.

The language of A in state q ∈ Q, denoted L(A, q), is the smallest
subset of terms a(t1, . . . , tn) ∈ U(Σ) such that

◮ there exists i1, . . . , in ≤ p such that for all j ≤ n,
tj ∈ L(A, qij),

◮ there exists a transition a(φ)→ q ∈ ∆ such that
#(qi1 , . . . , qin) |= φ(x1, . . . , xp).

The language of A is L(A) =
⋃

q∈Qf
L(A, q).

PA: Example 1

Σ = {a, b, f}.
Set of trees of U(Σ) where all the a and b label the leaves:

PA: Example 1

Σ = {a, b, f}.
Set of trees of U(Σ) where all the a and b label the leaves:

A =
(
{q}, {q}, {a(xq = 0)→ q, b(xq = 0)→ q, f(true)→ q}

)

PA: Example 2

Σ = {a, b, c}.
Set of trees of U(Σ) with the same number of a and of b under
each node.

PA: Example 2

Σ = {a, b, c}.
Set of trees of U(Σ) with the same number of a and of b under
each node.

A =
(
{qa, qb, q}, {qa, qb, q}, {a(φ)→ qa, b(φ)→ qb, c(φ)→ q}

)

with φ ≡ xqa = xqb .

PA: Example 3

Σ = {a, b}.
Set of trees of U(Σ) where all internal node are labeled by a and
every node labeled by a has at least as much sons without b than
sons containing b.

PA: Example 3

Σ = {a, b}.
Set of trees of U(Σ) where all internal node are labeled by a and
every node labeled by a has at least as much sons without b than
sons containing b.

Q = Qf = {qa, qb}.
The state qb accepts the trees containing a b and qa accepts the
others.

∆ =

{
a(xqa ≥ xqb = 0) → qa a(xqa ≥ xqb > 0) → qb

b(xqa = xqb = 0) → qb

}

Normalized Presburger Automata

Definition :

A PA A = (Σ, Q,Qf ,∆) sur Σ is called normalized if for all a ∈ Σ
and q ∈ Q, there is at most one transition of the form a(φ)→ q in
∆.

When A is normalized, we note a(φa,q)→ q the unique transition
with a and q.

Proposition :

For all PA A, there exists a normalized PA An recognizing the same
language.

The size of An is linear in the size of A.

Complete Presburger Automata

Definition : Complete PA

A PA A = (Σ, Q,Qf ,∆) over Σ is complete if for all a ∈ Σ and all
qi1 , . . . , qin ∈ Q

∗ there exists at least one transition a(φ) → q ∈ ∆
such that #(qi1 , . . . , qin) |= φ.

Proposition : Completion

For all PA A, there exists a complete PA Ac recognizing the same
language.

The size of Ac is linear in the size of A.

Complete Presburger Automata

Definition : Complete PA

A PA A = (Σ, Q,Qf ,∆) over Σ is complete if for all a ∈ Σ and all
qi1 , . . . , qin ∈ Q

∗ there exists at least one transition a(φ) → q ∈ ∆
such that #(qi1 , . . . , qin) |= φ.

Proposition : Completion

For all PA A, there exists a complete PA Ac recognizing the same
language.

The size of Ac is linear in the size of A.

pr.: Let A = (Q,Qf ,∆) be a PA (normalized).
We add the state q⊥: Ac =

(
Q ∪ {q⊥}, Qf ,∆c

)
with

∆c := a
(
φa,q ∧ xq⊥ = 0

)
→ q s.t. a(φa,q)→ q ∈ ∆

∪ a
(∧

q∈Q

¬φa,q ∨ xq⊥ > 0
)
→ q⊥

Deterministic Presburger Automata

Definition : Deterministic PA

A PA A = (Σ, Q,Qf ,∆) over Σ is deterministic if for all a ∈ Σ and
all qi1 , . . . , qin ∈ Q

∗, if a(φ)→ q ∈ ∆ and a(φ′)→ q′ ∈ ∆ are such
that #(qi1 , . . . , qin) |= φ and #(qi1 , . . . , qin) |= φ′, then q = q′.

Lemma :

The determinism of PA is decidable.

pr.: Determinism is expressed the Presburger formula

∧

a(φ)→ q
a(φ′)→ q′

q 6= q′

¬(φ ∧ φ′)

Determinization of PA

Proposition : Determinization

For all PA A, there exists a deterministic PA Ad recognizing the
same language.

The size of Ad is exponential in the size of A (lower bound).

pr.: Let A = (Q,Qf ,∆), normalized with Q = {q1, . . . , qb}.

Ad =
(
2Q, {S ⊆ Q

∣
∣ S ∩Qf 6= ∅},∆d

)

Presburger formulae in ∆d: a free variable xS for each S ⊆ Q.

a
(∧

q∈S

ψa,q ∧
∧

q /∈S

¬ψa,q

)
→ S

with

ψa,q ≡ ∃
p∈Q

xp ∃
P⊆Q

p∈P

xP,p φa,q ∧
∧

p∈Q

xp =
∑

P⊆Q

p∈P

xP,p ∧
∧

P⊆Q

xP =
∑

p∈P

xP,p

ε-Transitions and Elimination

Remark :

PA with transitions q → q′ ≡ PA.

PA: Boolean Operations

Proposition :

The class of languages of PA is closed under intersection and com-
plementation.

∪ disjoint union (linear) or product (quadratic, preserves
determinism).

∩ de Morgan law or product (quadratic).

¬ complete, determinize, invert final states (exponential).

PA: Membership Decision

Proposition : ∈

The problem of membership is decidable for PA.

◮ in polynomial time for DPA,

◮ NP-complete for NPA.

PA: Emptiness Decision

Proposition : ∅

The problem of emptiness is decidable in polynomial time for PA.

pr.: states marking, construction of Mi ⊆ Q.

◮ initially, M0 = ∅.

◮ at each step, if for q ∈ Q \Mi,
∧

p∈Q\Mi

xp = 0 ∧
∨

a∈Σ

φa,q is

satisfiable, then Mi+1 := Mi ∪ {q}.

PA: Decision of Inclusion, Equivalence

Proposition : ⊆, ≡

The problems of inclusion and equivalence are decidable for PA.

pr.: L(A1) ⊆ L(A2) iff L(A1) ∩ (U(Σ) \ L(A2)) = ∅.

Weak Second Order Monadic Logic of Presburger

Syntax of formulae of PMSO.

◮ first order variables x. . .

◮ second order variables X. . .

◮

form ::= x = y
∣
∣ x ↓ y

∣
∣ a(x)

∣
∣ x ∈ X

∣
∣ x/pres (a ∈ Σ)

∣
∣ form ∧ form

∣
∣ form ∨ form

∣
∣ ¬form

∣
∣ ∃x form

∣
∣ ∃X form

∣
∣ ∀x form

∣
∣ ∀X form

pres ::= term = term
∣
∣ ¬pres

∣
∣ pres ∨ pres

∣
∣ pres ∧ pres

∣
∣ ∀z pres

∣
∣ ∃z pres

term ::= z (first order integer variable)
∣
∣ n (natural number)
∣
∣ [X] (X second order var.)
∣
∣ term+ term

formulas pres such that the variables z are bounded.
rem. no atoms x→ y as for ordered trees.

Weak Second Order Monadic Logic of Presburger
Semantics of PMSO.

◮ interpretation domain : set ‖t‖ of nodes of a tree t ∈ U(Σ),
◮ σ: first order variables → ‖t‖,
◮ ρ: second order variable → 2‖t‖,
◮ t, σ, ρ |= x = y iff σ(x) is σ(y),
◮ t, σ, ρ |= x ↓ y iff σ(x) is the father of σ(y) in t,
◮ t, σ, ρ |= a(x) iff σ(x) labeled by a in t,
◮ t, σ, ρ |= x ∈ X iff σ(x) ∈ ρ(X),
◮ t, σ, ρ |= x/φ iff (n1, . . . , np) |= φ where ni is the number of

sons (in t) of σ(x) in ρ(Xi) (with dom(ρ) = {X1, . . . ,Xp}),
◮ t, σ, ρ |= ψ1 ∨ ψ2 iff t, σ, ρ |= ψ1 or t, σ, ρ |= ψ2,
◮ t, σ, ρ |= ψ1 ∧ ψ2 iff t, σ, ρ |= ψ1 and t, σ, ρ |= ψ2,
◮ t, σ, ρ |= ¬ψ iff u, σ 6|= ψ,
◮ t, σ, ρ |= ∃xψ iff there exists p ∈ ‖t‖ s.t.
t, σ ∪ {p→ x}, ρ |= ψ,

◮ t, σ, ρ |= ∃Xψ iff the exists P ⊆ ‖t‖ s.t.
t, σ, ρ ∪ {P → X} |= ψ,

PMSO: Examples

◮ root:

x = ε ≡ ¬∃y y ↓x

◮ leaf:

leaf(x) ≡ ¬∃y x ↓ y

◮ x ↓ y ≡ ∃Y Y = {y} ∧ x/[Y]=1

◮ prefix ordering = transitive cloture of ↓:

x ↓∗ y ≡ ∀X
(
x ∈ X ∧ ∀z ∀z′ (z ∈ X ∧ z ↓ z′ ⇒ z′ ∈ X)

)
⇒

y ∈ X

PMSO Languages

Definition : language

The language defined by the closed PMSO formula ψ over Σ is the
set of terms t ∈ U(Σ) s.t. t |= ψ.

PMSO Language: example 1

The set of trees of the form f(a, . . . , a, b, . . . , b) with the same
number of a and b.

PMSO Language: example 1

The set of trees of the form f(a, . . . , a, b, . . . , b) with the same
number of a and b.

∃Xa ∃Xb f(ε) ∧ ∀y (y ∈ Xa ⇔ a(y)) ∧ (y ∈ Xb ⇔ b(y))
∧ ∀y ε ↓ y ⇒ (leaf(y) ∧ (y ∈ Xa ∨ y ∈ Xb))
∧ ε/[Xa]=[Xb]

PMSO: PA example 2

Σ = {a, b}.
The set of trees of U(Σ) s.t. every internal node is labeled by a
and every node labeled by a has at least as much sons without b
than sons containing b.

PMSO: PA example 2

Σ = {a, b}.
The set of trees of U(Σ) s.t. every internal node is labeled by a
and every node labeled by a has at least as much sons without b
than sons containing b.

∃Xa ∃Xb ∀x (b(x)⇒ leaf(x))
∧ (a(x) ∧ x/[Xa]≥[Xb]>0 ⇒ x ∈ Xb)

∧ (a(x) ∧ x/[Xa]≥[Xb]=0 ⇒ x ∈ Xa)

∧ (b(x) ∧ x/[Xa]=[Xb]=0 ⇒ x ∈ Xb)

Q = Qf = {qa, qb}.
The state qb accepts the trees containing a b and qa accepts the
others.

∆ =

{
a(xqa ≥ xqb = 0) → qa a(xqa ≥ xqb > 0) → qb

b(xqa = xqb = 0) → qb

}

PMSO: Examples of Queries
Base of clients of an online music store, stored in an unordered
unranked tree.
A client is a subtree:

◮ root labeled by client

◮ informations in the sons (purchase, labeled at root by the
kind).

Query for clients x who have purchased more jazz than blues:

query1(x) ≡ (∃Xjazz ∀y y ∈ Xjazz ⇔ jazz(y))
∧ (∃Xblues ∀y y ∈ Xblues ⇔ blues(y))
∧ client(x) ∧ x/[Xjazz]>[Xblues]

Query for clients x who have purchased more jazz than anything
else:

query1(x) ≡ (∃Xjazz ∀y y ∈ Xjazz ⇔ jazz(y))
∧ (∃Xother ∀y y ∈ Xother ⇔ ¬jazz(y))
∧ client(x) ∧ x/[Xjazz]>[Xother]

PMSO and PA

Theorem

L ⊆ O(Σ) is definable in PMSO iff L is a PA language.

Plan

Unranked Trees and Reasoning Tasks over XML Documents

Automata for Unranked Ordered Trees

Automata for Unranked Unordered Trees

Automata for Unranked Mixed Trees
Presburger Constraints and Unranked Ordered Trees
Mixed Trees

Regular Languages modulo Associativity and Commutativity

Verification of XML Updates

Presburger Hedge Automata (PHA)

Definition : Presburger Hedge Automata

A Presburger Hedge Automaton (PHA) over an alphabet Σ is a tuple
A = (Σ, Q,Qf ,∆) where Q = {q1, . . . , qp} is a finite set of states,
Qf ⊆ Q is the subset of final states and ∆ is a set of transition
rules of the form: a

(∨

i(Li ∧φi)
)
→ q with a ∈ Σ, q ∈ Q, Li ⊆ Q

∗

regular language and φi = φ(x1, . . . , xp) is a Presburger formula
with a free variable for each state.

for all w ∈ Q∗ we define w |= Li ∧ φi if w ∈ Li and #(w) |= φi.

PHA: Languages

The language L(A, q) of A in state q ∈ Q is the smallest set of
ordered unranked trees a(t1, . . . , tn) ∈ O(Σ) s.t.

◮ there exists i1, . . . , in ≤ p such that for all j ≤ n,
tj ∈ L(A, qij),

◮ there exists a transition a
(∨

i(Li ∧ φi)
)
→ q ∈ ∆ such that

qi1 . . . qin |=
∨

i(Li ∧ φi), i.e. there exists i s.t.
◮ qi1 . . . qin ∈ Li,
◮ #(qi1 . . . qin) |= φi(x1, . . . , xp).

The language of A is L(A) =
⋃

q∈Qf
L(A, q).

PHA: Proprerties

Proposition :

◮ The class of PHA languages is closed under union and
intersection,

◮ The class of PHA languages is not closed under
complementation.

◮ ∪, ∩: product

◮ csq undecidability of the problem of universality.

Proposition :

DPHA 6≡ NPHA.

PHA: Decision Problems

Lemma :

Given a finite set Q, L ⊆ Q∗, regular, and φ = φ(x1, . . . , xp) a
Presburger formula (p = |Q|), it is decidable whether there exists
w ∈ L such that #(w) |= φ.

Proposition : ∈

The membership is decidable for PHA.

Proposition : ∅

The emptiness is decidable for PHA.

Proposition : ∀

Universality is undecidable for PHA.

PHA: Logic

Theorem :

A set of trees of O(Σ) is recognizable by a PHA iff it is defined by
a PMSO formula of the form ∃X1 . . . ∃Xk φ where φ is first order.

Corollary :

◮ EPMSO (existential fragment) is decidable in O(Σ).

◮ PMSO is undecidable over O(Σ).

Mixed Trees

◮ Σ = ΣA ∪ ΣAC .

tree := a(hedge) | c(multiset) (a ∈ ΣA, c ∈ ΣAC)
hedge := tree, . . . , tree

multiset := {tree, . . . , tree}

◮ c
(
{t1, . . . , tn}

)
is denoted c(t1, . . . , tn).

◮ The set of mixed unranked trees over Σ is denotedM(Σ).

Presburger m-Tree Automata (PMA)

Definition : Presburger m-Tree Automata

A Presburger m-Tree Automaton (PMA) over an alphabet Σ =
ΣA ∪ ΣAC is a tuple A = (Σ, Q,Qf ,∆) where Q = {q1, . . . , qp} is
a finite set of states, Qf ⊆ Q is the subset of final states and ∆ is
a set of transition rules of the form:

◮ a
(
L
)
→ q with a ∈ ΣA, q ∈ Q, L ⊆ Q∗ is a regular language

or

◮ c
(
φ
)
→ q with c ∈ Σ, q ∈ Q, φ = φ(x1, . . . , xp) is a

Presburger formula with one free variable for each state.

PMA: Languages

The language L(A, q) of the PMA A in state q ∈ Q, is the
smallest set of mixed trees

◮ a(t1, . . . , tn), a ∈ ΣA, such that
◮ there exists i1, . . . , in ≤ p with tj ∈ L(A, qij) for all j ≤ n,
◮ there exists a transition a(L)→ q ∈ ∆ such that
qi1 . . . qin ∈ L,

◮ or c(t1, . . . , tn), c ∈ ΣAC , such that
◮ there exists i1, . . . , in ≤ p with tj ∈ L(A, qij) for all j ≤ n,
◮ there exists a transition c(φ)→ q ∈ ∆ such that

#(qi1 . . . qin) |= φ(x1, . . . , xp).

The language of A is L(A) =
⋃

q∈Qf
L(A, q).

PMA: Properties and Decision Results

Proposition :

The class of PMA languages is closed under all Boolean operations.

Proposition :

DPMA ≡ NPMA.

Proposition : ∈

Membership is decidable for PMA.

Proposition : ∅

Emptiness is decidable for PMA.

Consequences of the analogous results for PHA (PMA ⊆ PHA).

PMA: Logic

Theorem :

The class of languages ofM(Σ) definable by PMSO formulae is the
class of PMA languages.

Corollary

PMSO overM(Σ) is decidable.

Plan

Unranked Trees and Reasoning Tasks over XML Documents

Automata for Unranked Ordered Trees

Automata for Unranked Unordered Trees

Automata for Unranked Mixed Trees

Regular Languages modulo Associativity and Commutativity
Variants of HA
Regular Languages modulo Associativity
Regular Languages modulo Associativity and Commutativity

Verification of XML Updates

Imperative Program

[Bouajjani Touili CAV 02]

void X() {

while(true) {

if Y() {

thread_create(&t1,Z)

} else { return }

}

}

X → Y · X (r1)
Y → t (r2)
Y → f (r3)
t · X → X ‖ Z (r4)
f → 0 (r5)

Reachability analysis:

◮ The set of reachable terms is regular, but

◮ we want · Associative,

◮ and ‖ Associative and Commutative,

◮ and regular term languages are not closed modulo A and AC.

→ consider unranked trees as representative.

Extensions of HA

Definition : CF-HA

A CF-HA is a tuple (Σ, Q,Qf ,∆), where Q, Qf are as for HA and
the transitions of ∆ have the form a(L) → q with a ∈ Σ, q ∈ Q,
and L ⊆ Q∗ is a context-free language.

Definition : CS-HA

A CS-HA is a tuple (Σ, Q,Qf ,∆) where Q, Qf are as for HA and
the transitions of ∆ have the form a(L) → q with a ∈ Σ, q ∈ Q,
and L ⊆ Q∗ is a context-sensitive language.

CF-HA: Example

Σ = {a, b, f}, language L of trees of O(Σ):

◮ whose internal nodes are labeled by f ,

◮ with the same number of leaves a than leaves b under every
node.

CF-HA: Example

Σ = {a, b, f}, language L of trees of O(Σ):

◮ whose internal nodes are labeled by f ,

◮ with the same number of leaves a than leaves b under every
node.

language of the CF-HA (Q,Qf ,∆) with Q = {q, qa, qb} and

∆ = {a→ qa, b→ qb, f(L)→ q}

L is the language generated by the context-free grammar

N := ε
∣
∣ all permutations of NNaNb

∣
∣ q

Na := qa Nb := qb

Rem.: L is not a HA language.

Regular Languages modulo A (A-TA)

Signature Σ = Σ∅ ⊎ {a}.
The symbols of a is binary and follows the associativity axiom:

a(x1, a(x2, x3)) = a(a(x1, x2), x3) (A)

Given a TA B over Σ, we note

A
(
L(B)

)
:=

{
t ∈ T (Σ)

∣
∣ t←−−→∗

A
s ∈ L(B)

}

(A-TA language)

Proposition :

◮ the class of regular tree languages is strictly included in the
class of A-TA languages.

◮ The class of A-TA languages is not closed under intersection.

Correspondences T (Σ)↔ O(Σ)
Σ = Σ∅ ⊎ {a} where a is the only associative symbol.

flat : T (Σ) → O(Σ)
hflat : T (Σ)∗ → H(Σ)
flat−1 : O(Σ) → T (Σ)

Definitions (g ∈ Σn \ΣA):

flat
(
g(t1, . . . , tn)

)
= g(flat (t1) . . . flat(tn))

flat
(
a(t1, t2)

)
= a(hflat (t1 t2))

hflat
(
g(s1, . . . , sn) t2 . . . tm

)
= flat

(
g(s1, . . . , sn)

)
hflat (t2 . . . tm)

hflat
(
a(s1, s2) t2 . . . tm

)
= hflat(s1s2 t2 . . . tm)

flat−1
(
g(t1 . . . tn)

)
= g(flat−1(t1), . . . ,flat

−1(tn))
flat−1

(
a(t1 . . . tm)

)
= a(flat−1(t1), a(flat

−1(t2), . . . ,

a(flat−1(tm−1),flat
−1(tm))))

(m ≥ 2)

A-TA ↔ CF-HA

Proposition :

A-TA ≡ CF-HA via flattening.

⊆ for all TA A there exists a CF-HA A′ such that
L(A′) = flat

(
L(A)

)
= flat

(
A(L(A))

)
.

TA A CF-HA A′

a(q1, q2)→ q Nq := Nq1Nq2 , Nq := q
g(q1, . . . , qk)→ q g(q1 . . . qk)→ q

⊇ for all CF-HA A′ there exists a TA A such that
L(A) = flat−1

(
L(A′)

)
(i.e. flat

(
A(L(A))

)
= L(A′)).

CF-HA A′ TA A
N := N1N2 a(qN1 , qN2)→ qN
I := N1N2 a(qN1 , qN2)→ q
g(q1 . . . qk)→ q g(q1, . . . , qk)→ q

Generalized Tree Automata (GTA)

Definition : GTA

A generalized Tree Automata (GTA) over a signature Σ is a tuple
B = (Σ, Q,Qf ,∆) where Q is a finite set of states, Qf ⊆ Q is the
subset of final states and ∆ is a set of transition rules of the form
f(q1, . . . , qn) → q or a(q1, q2) → a(q′1, q

′
2) with f ∈ Σn (n ≥ 0)

and q1, . . . , qn, q
′
1, . . . , q

′
n ∈ Q.

For a TA or GTA B, we define the languages:

L(B) := {t ∈ T (Σ)
∣
∣ t −−→∗

∆
q ∈ Qf}

LA(B) := {t ∈ T (Σ)
∣
∣ t −−−→∗

∆/A
q ∈ Qf}

where −−−→∗∆/A is rewriting modulo A: −−−→∗∆/A :=←−−→∗A ◦ −−→∆ ◦ ←−−→∗A

Languages of TA and GTA modulo A

Proposition :

For all GTA B, there exists a TA B′ such that L(B′) = L(B).

Proposition :

For all TA B, LA(B) = A
(
L(B)

)
.

Csq: the emptiness of LA(B) for a TA B is decidable.

Proposition :

For a GTA B, in general LA(B) 6= A
(
L(B)

)
.

∆B = {a→ q1, b→ q2, f(q1, q2)→ f(q3, q3), f(q3, q2)→ q2}.
L(B, q2) = {b}
LA(B, q2) ∋ f(f(a, b), b)

CS-HA ↔ GTA modulo A

Proposition :

A-GTA ≡ CS-HA via flattening.

⊆ for all GTA A there exists a CS-HA A′ such that
L(A′) = flat

(
LA(A)

)
.

GTA A CS-HA A′

a(q1, q2)→ q Nq := Nq1Nq2

a(q1, q2)→ a(q3, q4) Nq3 Nq4 := Nq1 Nq2

Nq := q
g(q1, . . . , qk)→ q g(q1 . . . qk)→ q

⊇ for all CS-HA A′ there exists a GTA A such that
LA(A) = A

(
flat−1

(
L(A′)

))
(i.e. flat

(
LA(A)

)
= L(A′))

CS-HA A′ TA A
N := N1N2, N 6= I a(qN1 , qN2)→ qN
N1N2 := N3N4 a(qN3 , qN4)→ a(qN1 , qN2)
I := N1N2 for La,q a(qN1 , qN2)→ q
g(q1 . . . qk)→ q g(q1, . . . , qk)→ q

GTA & CS-HA: Decision Results

Proposition : ∈ CS-HA

The membership problem is PSPACE-complete for CS-HA.

Proposition : ∈ GTA

The membership problem t ∈ LA(B) given a GTA B is PSPACE-
complete.

Proposition : ∅ CS-HA

The emptiness problem is undecidable for CS-HA.

Proposition : ∅ GTA

The emptiness problem LA(B) given a GTA B is undecidable.

Regular Languages modulo AC (AC-TA)

Signature Σ = Σ∅ ⊎ {a}.
The symbol a is binary and follows the axioms of associativity and
commutativity:

a(x1, a(x2, x3)) = a(a(x1, x2), x3) (A)

a(x1, x2)) = a(x2, x1) (C)

For a TA B over Σ, we note
AC

(
L(B)

)
:=

{
t ∈ T (Σ)

∣
∣ t =AC s ∈ L(B)

}
(language of AC-TA)

Proposition :

◮ the class of regular tree languages is strictly included in the
class of AC-TA languages.

◮ La class of AC-TA languages is closed under Boolean
operations.

Correspondence between PA, HA and AC-TA

Proposition :

There is a equivalence, via flattening, between

1. PA

2. CF-HA whose (CF) languages in transitions are closed under
permutation

3. AC-TA

pr.:

◮ 1 ≡ 2 by Parikh’s theorem (equivalence between solutions of
Presburger formulas and Parikh projection of CF languages)

◮ 2 ≡ 3 with above constructions for A-TA and of previous
lecture with flat , flat−1.

Summary

CS-HA ≡ A-GTA
Boolean closures
∅ undecidable.

CF-HA ≡ A-TA
no closure under ∩ and ¬
∅ decidable.

PA ≡ CF-HA/perm ≡ AC-TA
Boolean closures
∅ decidable.

HA ≡ TA
Boolean closures
∅ decidable.

Plan

Unranked Trees and Reasoning Tasks over XML Documents

Automata for Unranked Ordered Trees

Automata for Unranked Unordered Trees

Automata for Unranked Mixed Trees

Regular Languages modulo Associativity and Commutativity

Verification of XML Updates

Verification of XML Transformations

Typechecking XML transformations languages: different models for
different languages

◮ [Milo Suciu Vianu 03]: k-PTTs
(XSLT fragment without data joins); backward type inference.

◮ [Maneth Berlea Perst Seidl 05],

[Engelfriet Maneth Seidl 09]: language LT and MTTs.

◮ [Martens Neven 04]: top-down tree transducers.

◮ [Tozawa 01] backward type inference for XSLT without
XPath, with recursive calls (alternating TA).

◮ [Frish Hozawa 07] backward type inference for MTTs
(optimizations).

XQuery Update Facility

W3C recommandation 2011

◮ [Fundulaki Maneth 04] XACU: model based on the W3C
XQuery Update Facility draft.

◮ [Benedikt Cheney 10] formal model, operational semantics.

◮ [Bravo Cheney Fundulaki 08] synthesis of schema, verification
tool ACCoN.

◮ [Gardner et al 08] local Hoare reasoning about W3C DOM
update library (Context Logic).

◮ [JR PPDP 10]

◦ formal model: parameterized rewrite rules
◦ forward/backward type inference, typechecking,

reachability verification regular tree model checking
◦ verification of access control policies

A DTD and a HA

addressbook

card∗

name

char∗

phone∗

char∗

address∗

street

char∗

city

char∗

addressbook(pc
∗) → pb

card(pn ph
∗ pa

∗) → pc
card(pn) → pec
name(p∗) → pn
phone(p∗) → ph

address(pst pci) → pa
street(p∗) → pst
city(p∗) → pci

a → p
b → p
c → p
...

XUFreg Rule: Rename

”replace a label mobile by phone”

mobile(x)→ phone(x)

◮ the variable x stands for a sequence of trees (hedge).

◮ the rule can be applied to any node labeled by mobile.

addressbook

card

name

a b

mobile

123456

→ addressbook

card

name

a b

phone

123456

XUFreg Rule: Insert first

”insert a tree of type pec (card with only a name) as the first
children of addressbook”

addressbook(x)→ addressbook(pec x)

◮ the rewrite rule can be applied to any node labeled by
addressbook.

◮ pec is a state of a given HA A.

◮ it stands for an arbitrary tree in the language recognized by A
in state pec.

◮ this parametrized rule represents an infinity of rules.
see [Gilleron 91], [Löding 02, 07].

XUFreg Rule: Insert last

”insert a tree of type pa (address) as the last children of card”

card(x)→ card(x pa)

addressbook

card

name

a b

phone

123456

→ addressbook

card

name

a b

phone

123456

address

street

s

city

n

XUFreg Rule: Insert into

”insert a tree of type pec as a children of addressbook”

addressbook(x y)→ addressbook(x pec y)

◮ each of the variables x and y stands for an arbitrary sequence
of trees (hedge).

XUFreg Rule: Insert before

”insert a tree of type ph (phone) as preceding sibling of address”

address(x)→ ph address(x)

addressbook

card

name

a b

address

street

s

city

n

→ addressbook

card

name

a b

phone

123456

address

street

s

city

n

XUFreg Rule: Insert after

”insert a tree of type ph (phone) as following sibling of phone”

phone(x)→ phone(x) ph

addressbook

card

name

a b

phone

123456

address

street

s

city

n

→ addressbook

card

name

A B

phone

123456

phone

789012

address

street

s

city

n

XUFreg Rule: Replace

”replace a subtree (headed by) address by an arbitrary tree of
type pa”

address(x)→ pa

addressbook

card

name

a b

phone

123456

address

street

s

city

n

→ addressbook

card

name

a b

phone

123456

address

street

s′

city

n′

XUFreg Rule: Delete

”delete a whole subtree headed by card”

card(x)→ ()

◮ () is the empty sequence of trees.

Delete single node (not a XQuery Update Primitive)

addressbook

card

name

Homer Simpson

favorite

card

name

Freddy Krueger

card

name

Jason Voorhees

card

name

Noel Gallagher

↓

addressbook

card

name

Homer Simpson

card

name

Freddy Krueger

card

name

Jason Voorhees

card

name

Noel Gallagher

Extended XUFreg Rule: Delete single node

”delete a single node labeled by favorite”

favorite(x)→ x

◮ the trees in the sequence of children x are moved up to the
position of the deleted node.

◮ collapsing rule

Extended XUFreg Rule: Multiple Replace

”replace a subtree (headed by) card by an sequence of n trees of
respective types p1, . . . , pn”

card(x)→ p1 . . . pn

◮ this parametrized rule represents an infinity of rules.

◮ the right hand sides of these rules are hedges (not trees).

Summary

XUFreg XUF

a(x) → b(x) REN

a(x) → a(p x) INSfirst a(x) → p a(x) INSbefore

a(x) → a(x p) INSlast a(x) → a(x) p INSafter

a(x y) → a(x p y) INSinto

a(x) → p RPL1 a(x) → p1 . . . pn RPL

a(x) → () DEL a(x) → x DELs

Forward Type Inference for XUFreg

Theorem :

For R in XUFreg, Lin HA language, R∗(Lin) is a HA language.

pr.:
◮ let Ain be the HA for Lin and A be the HA parameter of R,
◮ the HA Aout is obtained from Ain ⊎ A, by adding transitions

to the horizontal NFAs:

Forward Type Inference for XUFreg

Theorem :

For R in XUFreg, Lin HA language, R∗(Lin) is a HA language.

pr.:
◮ let Ain be the HA for Lin and A be the HA parameter of R,
◮ the HA Aout is obtained from Ain ⊎ A, by adding transitions

to the horizontal NFAs:

case INSfirst: a(x)→ a(p x) ∈ R, a

(

ia,q fa,q

)

→ q

Forward Type Inference for XUFreg

Theorem :

For R in XUFreg, Lin HA language, R∗(Lin) is a HA language.

pr.:
◮ let Ain be the HA for Lin and A be the HA parameter of R,
◮ the HA Aout is obtained from Ain ⊎ A, by adding transitions

to the horizontal NFAs:

case INSfirst: a(x)→ a(p x) ∈ R, a

(

ia,q fa,q

p

)

→ q

Forward Type Inference for XUFreg

Theorem :

For R in XUFreg, Lin HA language, R∗(Lin) is a HA language.

pr.:
◮ let Ain be the HA for Lin and A be the HA parameter of R,
◮ the HA Aout is obtained from Ain ⊎ A, by adding transitions

to the horizontal NFAs:

case INSfirst: a(x)→ a(p x) ∈ R, a

(

ia,q fa,q

p

)

→ q

case REN: a(x)→ b(x) ∈ R

a
(

ia,q fa,q
)

→ q

b
(

ib,q fb,q
)

→ q

Forward Type Inference for XUFreg

Theorem :

For R in XUFreg, Lin HA language, R∗(Lin) is a HA language.

pr.:
◮ let Ain be the HA for Lin and A be the HA parameter of R,
◮ the HA Aout is obtained from Ain ⊎ A, by adding transitions

to the horizontal NFAs:

case INSfirst: a(x)→ a(p x) ∈ R, a

(

ia,q fa,q

p

)

→ q

case REN: a(x)→ b(x) ∈ R

a
(

ia,q fa,q
)

→ q

b
(

ib,q fb,q
)

→ q

ε ε

Forward Type Inference for XUF

Lemma

For some R in XUF and Lin HA language, R∗(Lin) 6∈ HA.

example: R = {c(x)→ x} (one DELs) and Lin = c

a c

a ...

c

a b

b

b

R∗(Lin) ∩ c
(
{a, b}∗

)
= {c(anbn) | n ≥ 0}

Forward Type Inference for XUF

Theorem :

ForR in XUF, Lin a CF-HA language,R∗(Lin) is a CF-HA language,
with a PTIME, polynomial size construction.

pr.: similar as XUFreg for for REN, INSfirst, INSlast, INSinto.

◮ REN: if a(x)→ b(x) ∈ R, then add I ′b,q := I ′a,q
◮ INSfirst: if a(x)→ b(p x) ∈ R, then add I ′b,q := p I ′a,q

add collapsing transitions for INSbefore, INSafter, RPL, DEL, DELs.

◮ RPL: if a(x)→ p1 . . . pn ∈ R and a(L)→ q transition, L 6= ∅,
then add the collapsing transition p1 . . . pn → q.

Backward Type Inference for XUF

Theorem :

For R in XUF, Lout a HA language, (R−1)∗(Lout) is a HA lan-
guage, with a EXPTIME, exponential size construction.

pr.: tree automata completion; construction of a finite sequence of
HA

Aout = A0,A1, . . . ,An = (R−1)∗(Aout)

by addition of new transitions.

Applications

Theorem :

ForR in XUF, Lin a CF-HA language,R∗(Lin) is a CF-HA language,
with a PTIME, polynomial size construction.

Consequences:

◮ reachability for XUF
◮ decidable in PTIME.

◮ typechecking XUF
given two HA for Lin, Lout and R in XUF, R∗(Lin) ⊆ Lout?

◮ EXPTIME-complete
◮ PTIME if Lout is given by a deterministic and complete HA.

◮ type synthesis:

◮ given R in XUF and an input type Lin,
a CF-HA for Lout is constructed in PTIME.

◮ given R in XUF and an output type Lout,
a HA for Lin is constructed in EXPTIME.

Rule Based Access Control Policies

Definition : [Fundulaki Maneth][Bravo et al, ACCOn]

An access control policy (ACP) is given by two finite sets of rules

◮ R+: authorized operations of XUF

◮ R−: forbidden operations of XUF

example

◮ R+ =

{
addressbook(x) → addressbook(pec x),

card(x) → ()

}

◮ user can insert card with name, delete card.

◮ R− = {name(x)→ pn}
◮ user cannot change a name.

Inconsistency

Inconsistency

An ACP 〈R+,R−〉 is inconsistent if one rule of R− can be
simulated through a sequence of rules of R+

example: changing name in a card is simulated by deleting and
then inserting.

Theorem : [Fundulaki Maneth 04] [Moore 09]

Inconsistency is undecidable for XUFreg.

Local Inconsistency

Definition : Local Inconsistency

An ACP 〈R+,R−〉 is locally inconsistent for t
if there exists u such that t −−−→R−

u and t −−−→∗R+
u.

Theorem : [JR PPDP 10]

Local inconsistency is decidable in PTIME for XUF.

pr.:

◮ compute a HA recognizing L− = {u | t −−−→R−
u}

◮ compute a CF-HA recognizing L+ = R∗
+

(
{t}

)

◮ check that L− ∩ L+ 6= ∅.

Summary

◮ model for Xquery Update facility primitives (and extensions)
as parameterized rewrite rules for unranked trees

◮ results of forward/backward type inference (rewrite closure)

◮ reachability decision

◮ decision of local inconsistency of ACPs

Extensions

◮ rules controlled with downward regular XPath expressions.

◮ better model: generalize R∗ to Re

(e regular expression over rule names).

◮ unranked unordered trees (Presburger Automata).

Part IV

Tree Automata Defined as Sets of Horn Clauses

Plan

Definition

Saturation Results

Tree Automata with Equality Constraints

Tree Automata with One Memory

Definition of tree automata as set of first order (universal) clauses.
Languages = Herbrand models.

+ uniform formalism for the definition of several classes of
automata (alternating, 2-ways, with constraints...)

+ enables the use of techniques and tools from automatic
deduction in order to solve the classical decision problems

− complexity

− not easy to analyse the history
(and construct a witness, a run...)

Clauses: Syntax

◮ terms in T (Σ,X) over signature Σ (Σn: symbol of arity n)

◮ finite set P of predicate symbols P , Q,. . . (notation Pn)
basically we will only considerer predicates of arity 0 or 1.

◮ literals positive: P (t), denoted +P (t)
negative: ¬P (t), denoted −P (t)

◮ clause: disjunction of literals ±P1(t1) ∨ . . . ∨±Pk(tk)
empty clause (k = 0), denoted ⊥.

◮ Horn clause: at most one positive literal
−P1(t1) ∨ . . . ∨ −Pk(tk) ∨+P (t), denoted
P1(t1), . . . , Pk(tk)⇒ P (t).

◮ goal = negative clause
−P1(t1) ∨ . . . ∨ −Pk(tk), denoted P1(t1), . . . , Pk(tk)⇒ ⊥.

Herbrand Models

◮ a Herbrand structure H has domain T (Σ) and

fonctions fH(t1, . . . , tn) := f(t1, . . . , tn)
(ground term with the symbol f at the root).

◮ H is completely defined by the set of ground atoms P (t) such
that H |= P (t).

Theorem :

A set of clauses S is satisfiable iff it admits a Herbrand model.

Theorem :

Every satisfiable set S of Horn clauses admits a smallest (wrt inclu-
sion) Herbrand model HS.

Smallest Herbrand Models

Theorem :

Every satisfiable set S of Horn clauses admits a smallest (wrt inclu-
sion) Herbrand model HS.

A set of Horn clauses S defines the following operator TS over sets
of ground atoms

TS(L) =

{

P (tσ)

∣
∣ tσ ground, P1(t1), . . . , Pn(tn)⇒ P (t) ∈ S,
∣
∣ P1(t1σ), . . . , Pn(tnσ) ∈ L

}

∪ {⊥} if P1(t1), . . . , Pn(tn)⇒ ⊥ ∈ S,
P1(t1σ), . . . , Pn(tnσ) ∈ L

The smallest fixpoint of TS is
⋃

n≥1 T
n
S (∅),

◮ if it contains ⊥, then S is not satisfiable,

◮ otherwise, it is the smallest Herbrand model of S.

Languages and Automata

The language of a satisfiable set S of Horn clauses for a predicate
Q is:

L(S,Q) = {t | Q(t) ∈ HS}

Let A = (Σ, {q1, . . . , qk}, F,∆) be a bottom-up tree automaton.
Let P = {Q1, . . . , Qk} be a set of unary predicates.
We associate to A the (satisfiable) set of Horn clauses

SA :=

{
Q1(x1), . . . , Qn(xn)⇒ Q

(
f(x1, . . . , xn)

)

| f(q1, . . . , qn)→ q ∈ ∆

}

Lemma :

For all state q, L(A, q) = L(SA, Q).

Clauses/Classes of Automata

clauses of standard automate (x1, . . . , xn pairwise distinct)

Q1(x1), . . . , Qn(xn)⇒ Q
(
f(x1, . . . , xn)

)
(reg)

ε-transitions
Q1(x)⇒ Q(x) (ε)

alternating clauses

Q1(x), . . . , Qn(x)⇒ Q(x) (alt)

2-ways (bidirectional) clauses (x1, . . . , xn pairwise distinct)

Q
(
f(x1, . . . , xn)

)
⇒ Qi(xi) (bidi)

Plan

Definition

Saturation Results

Tree Automata with Equality Constraints

Tree Automata with One Memory

Decision Problems, Satisfiability

Let S be a satisfiable set of Horn clauses and let Q be a predicate.

◮ membership: the ground term t ∈ L(S,Q) iff
S ∪ {Q(t)⇒ ⊥} is unsatisfiable

◮ emptiness: L(S,Q) 6= ∅ iff S ∪ {Q(x)⇒ ⊥} is unsatisfiable.

◮ membership of instance: there exists σ such that
tσ ∈ L(S,Q) iff S ∪ {Q(t)⇒ ⊥} is unsatisfiable.

◮ emptiness of intersection: L(S,Q1) ∩ . . . ∩ L(S,Qp) 6= ∅ iff
S ∪ {Q1(x), . . . , Qp(x)⇒ ⊥} is unsatisfiable.

⇒ we are interested in automated deduction techniques for
deciding the satisfiability when S represents an automaton.

Resolution

Clauses:
C ∨ +Q(s) −Q(t) ∨D

Cσ ∨Dσ

where σ is the most general unifier (mgu) of s and t.

Horn clauses:

P1(s1), . . . , Pm(sm)⇒ Q1(s) Q1(t1) , Q2(t2), . . . , Qn(tn)⇒ Q(t)

P1(s1σ), . . . , Pm(smσ), Q2(t2σ), . . . , Qn(tnσ)⇒ Q(tσ)

where σ is the mgu of s and t1.

Theorem : correction, completeness

A set S of Horn clauses is unsatisfiable iff one can derive ⊥ by
resolution starting from S.

Terminaison of Resolution

The application of the resolution rule to automata clauses (reg)
does not terminate.

P1(x1), P2(x2)⇒ Q1(g(x1, x2)) Q1(y1) , Q2(y2)⇒ Q(f(y1, y2))

P1(x1), P2(x2), Q2(y2)⇒ Q
(
f(g(x1, x2), y2)

)

Complete Strategies for Resolution

(C) (D)

P1(s1), . . . , Pm(sm)⇒ Q1(s) Q1(t1) , . . . , Qn(tn)⇒ Q(t)

P1(s1σ), . . . , Pm(smσ), Q2(t2σ), . . . , Qn(tnσ)⇒ Q(tσ)

ordered resolution for ≻ :

◮ Q1(s) maximal for ≻ in C,

◮ Q1(t1) maximal for ≻ in D.

ordered resolution with selection :
selection function : clause 7→ subset of negative literals.

◮ no literal is selected in C,

◮ Q1(s) is maximal for ≻ in C,

◮ Q1(t1) is selected in D or

◮ no literal is selected in D and Q1(t) is maximal in D.

Completeness of Ordered Resolution

Theorem :

Ordered resolution with selection is complete for Horn clauses.

Starting from any unsatisfiable set S, we shall derive ⊥.

Choice of an Ordered Strategy with Selection

◮ ordering ≻ s.t. P (s) ≻ Q(t) iff s > t for the subterm
ordering >.

◮ selection function sel :
◮ negative literals −Q(t) where t is not a variable.

Lemma :

Every tree automaton (finite set clauses of type (reg)) is saturated
under resolution ordered by ≻.

Resolution ordered by ≻ and with selection by sel cannot be
applied between automata clauses (reg) like in

P1(x1), . . . , Pm(xm)⇒ Q1(g(x)) Q1(y1) , . . . , Qn(yn)⇒ Q(f(y))

P1(x1), . . . , Pm(xm), Q2(y2), . . . , Qn(yn)⇒ Q
(
f(g(x), y2, . . . , yn)

)

because no literal are selected in the clauses and Q1(y1) is not
maximal in {Q1(y1), . . . , Qn(yn), Q(f(y))} (Q(f(y)) ≻ Q1(y1)).

Transformation of Alternating Automata (reg+ alt = reg)

Alternating automata = finite set of clauses

Q1(x1), . . . , Qn(xn)⇒ Q
(
f(x1, . . . , xn)

)
(reg)

and
Q1(x), . . . , Qn(x)⇒ Q(x) (alt)

Proposition :

Given an alternating tree automaton A over Σ, we can construct
in exponential time a deterministic bottom-up tree automaton A′

recognizing the same language.

Construction by application of ordered resolution with selection,
following an appropriated strategy.

Transformation of Alternating Automata

◮ start from a set A of clauses of the form (reg) and (alt).

◮ saturate with resolution ordered (by ≻) with selection (by sel).

◮ all the clauses produced belong to a type containing an
exponential number of clauses

Q1(xi1), . . . , Qk(xik), Q
′
1(f(x)), . . . , Q

′
m(f(x))⇒ Q(f(x))

(f)

◮ hence saturation terminates with a set A′′

◮ the application of resolution to A′′ ∪ {Q(t)⇒ ⊥} (for a
ground term t) only involves clauses of the form (reg).

◮ hence, for all Q, L(A′′, Q) = L(A′′|reg, Q).

Transformation of Bidirectional Alternating Automata

(reg+ alt+ bidi = reg)
Bidirectional (2-way) alternating automata = finite set of clauses

Q1(x1), . . . , Qn(xn)⇒ Q
(
f(x1, . . . , xn)

)
(reg)

and
Q1(x), . . . , Qn(x)⇒ Q(x) (alt)

and
Q
(
f(x1, . . . , xn)

)
⇒ Qi(xi) (bidi)

Proposition :

Given a bidirectional alternating tree automaton A over Σ, we can
construct in exponential time a bottom-up deterministic tree au-
tomaton A′ recognizing the same language.

same principle as for alternating tree automata, with
◮ other ordering and selection function for defining the

resolution strategy,
◮ and a new rule called ε-splitting.

Decision of Instance Membership
tree automaton

Q1(x1), . . . , Qn(xn)⇒ Q
(
f(x1, . . . , xn)

)
(reg)

+ query
Q(t)⇒ ⊥

Resolution ordered by ≻ with selection by sel and ε-splitting
terminates. invariant: the resolution only produces clauses of the
following 2 types:

P1(s1), . . . , Pm(sm), q1, . . . , qk ⇒ [q] (gs)

where m,k ≥ 0, and s1, . . . , sm are subterms of t.

P1(yi1), . . . , Pk(yik), P
′
1(f(y1, . . . , yn)), . . . , P

′
m(f(y))⇒ [q] (gf)

where k,m ≥ 0, k+m > 0, i1, . . . , ik ≤ n, and y1, . . . , yn distinct.

Plan

Definition

Saturation Results

Tree Automata with Equality Constraints

Tree Automata with One Memory

Testing Equalities between Brother Subterms

In standard tree automata clauses, the variables x1, . . . , xn are
pairwise distinct

Q1(x1), . . . , Qn(xn)⇒ Q
(
f(x1, . . . , xn)

)
(reg)

With variable sharing in

Q1(x1), . . . , Qn(xn)⇒ Q
(
f(x1, . . . , xn)

)
(brother)

we force equalities between brother subterms.

example: ⇒ Q(a),
Q(x1), Q(x2) ⇒ Q

(
f(x1, x2)

)
,

Q(x), Q(x) ⇒ Qf

(
f(x, x)

)

Testing Equality between Brother Subterms

Tree automata with equality tests between brother subterms are
strictly more expresive than bottom-up tree automata.

Theorem :

The emptiness problem is EXPTIME-complete for tree automata
with equality tests between brother subterms.

Testing Equalities and Disequalities between Brother

Subterms

[Bogaert Tison STACS 1992]: tests of = and 6= between brother
subterms (see chapter 4 TATA book).

◮ determinizable in exponentiel time

◮ all Boolean closures

◮ emptiness decidable in PTIME for deterministic

◮ emptiness EXPTIME-complete for non-deterministic

[Reuss Seidl 2010]: clausal presentation with 6=.

Testing Arbitrary Equalities

One can perform more general tests with clauses with equalities

Q1(x1), . . . , Qn(xn), u1 = v1, . . . , uk = vk ⇒ Q
(
f(x1, . . . , xn)

)

(test)
where k ≥ 0, u1, v1, . . . , uk, vk ∈ T

(
Σ, {x1, . . . , xn}

)
.

Without restrictions, emptiness is undecidable.

Arbitrary Equality Tests: Decidable Class

[JRV JLAP 08]
We distinguish some predicates call test predicates, and assume a
partial ordering ≻ over predicates such that Q ≻ Q0

for all Q, test predicate and Q0 non-test.

Q1(x1), . . . , Qn(xn), u1 = v1, . . . , uk = vk ⇒ Q
(
f(x1, . . . , xn)

)

(test)
where Q is a test predicate, and for all i ≤ n, Q ≻ Qi

Q1(x1), . . . , Qn(xn)⇒ Q
(
f(x1, . . . , xn)

)
(reg′)

where either all Q,Q1, . . . , Qn are not test predicates, or
Q is a test predicate and at most one Qi = Q and the others are
not test.

Arbitrary equality tests: decidable class

example: stuttering lists

⇒ Q0(0) Q0(x) ⇒ Q0(s(x))
⇒ Q1(nil) Q0(x), Q1(y) ⇒ Q1(cons(x, y))

Q0(x), Q2(y) ⇒ Q2(cons(x, y))

Q0(x), Q1(y), y = cons(x, y′)⇒ Q2(cons(x, y))

Arbitrary Equality Tests: Decidable Class

Theorem :

The satisfiability of a set of clauses of type (test) and (reg′) and a
goal clause Q(t)⇒ ⊥ is decidable.

pr.: Saturation by ordered paramodulation with selection and
ǫ-splitting.

Extension to langages (and equality tests) modulo equational
theories, by adding clauses

⇒ ℓ = x

of a restricted form.

Example:

car(cons(x, y)) = x, cdr(cons(x, y)) = y, cons
(
car(y), cdr(y)

)
= y

Plan

Definition

Saturation Results

Tree Automata with Equality Constraints

Tree Automata with One Memory

Pushdown Tree Automata with One Tree Memory
[Guessarian 83, Schimpf Gallier 85, Coquidé et al 94]

◮ Σ: input signature; on input: terms of T (Σ)

◮ Γ: stack alphabet; the auxiliary memory is a stack of Γ∗

Q1(x1, s1), . . . , Qn(xn, sn)⇒ Q
(
f(x), h(y1, . . . , ym)

)
(read)

where f ∈ Σ, h ∈ Γ, s1, . . . , sn ∈ T (Γ, {y1, . . . , ym})

Q1(x, s)⇒ Q
(
x, h(y1, . . . , ym)

)
(pda-ε)

where h ∈ Γ, s ∈ T (Γ, {y1, . . . , ym}).

Same expressiveness as context-free tree grammars

X(x1, . . . , xn)→ r

where X ∈ N, non-terminal of arity n, x1, . . . , xn distinct
variables, r ∈ T

(
Σ ∪ N, {x1, . . . , xn}

)

Tree Automata with One Memory
[Comon Cortier 05]

Q1(x1, y1), Q2(x2, y2)⇒ Q
(
f(x1, x2), h(y1, y2)

)
(push)

Q1

(
x1, h(y11, y12)

)
, Q2(x2, y2)⇒ Q

(
f(x1, x2), y11

)

Q1(x1,⊥), Q2(x2, y2)⇒ Q
(
f(x1, x2),⊥

)
(pop11)

. . . (pop12), (pop21), (pop22)

⇒ Q(a,⊥) (int0)

Q1(x1, y1), Q2(x2, y2)⇒ Q
(
f(x1, x2), y1

)
(int1)

Q1(x1, y1), Q2(x2, y2)⇒ Q
(
f(x1, x2), y2

)
(int2)

where h ∈ Γ2, a ∈ Σ0, f ∈ Σ2.

Tree Automata with One Memory: Languages and Closure

(input) Language

L(A, Q) = {t | Q(t, s) ∈ HS}

Memory Language

M(A, Q) = {s | Q(t, s) ∈ HS}

Languages of tree automata with one memory are closed under ∪
but not under ∩ or ¬.

[CJP FOSSACS 07] addition of a visibly condition:

◮ Σ = Σpush ⊎Σpop11
⊎ . . . ⊎ Σint0 ⊎Σint1 ⊎ Σint2

◮ the input symbol determines the possible operations on
memory

◮ full Boolean closure

Tree Automata with One Memory: Languages and Closure

Theorem :

The emptiness problem is decidable in polynomial time for tree au-
tomata with one memory.

Lemma :

For all A, Q, L(A, Q) = ∅ iff M(A, Q) = ∅.

◮ For all A, Q, M(A, q) is a language of bidirectional
alternating automata (clauses reg+ alt+ bidi = reg).

◮ definition by ”projection” of clauses on second component of
states.

◮ actually M(A, q) in a smaller class H3 [Nielson Seidl SAS 02]
decidable in cubic time.

Tree Automata with One Memory and Contraints

extension with constraints testing the content of the memory.

Q1(x1, y1), Q2(x2, y2), y1 = y2 ⇒ Q
(
f(x1, x2), y1

)
(int=1)

Q1(x1, y1), Q2(x2, y2), y1 = y2 ⇒ Q
(
f(x1, x2), y2

)
(int=2)

also 6= tests in the model of [CJP FOSSACS 07].

◮ emptiness is decidable

◮ Boolean closure with visibly condition and restriction of
constraints to structural equality.

TA1M for Verification

Tree automata with one memory and constraints can recognize the
following data-structures

◮ balanced binary trees

◮ powerlists
(description and verification of data parallel algorithms)

◮ red-black trees (binary search trees)

1. every node is black or red
2. the root is black
3. all the leaves are black
4. the 2 children of a red node are black
5. all paths have the same number of black nodes

