Decision problems on probabilistic programs over finite fields and all their extensions

Charlie Jacomme supervised by Hubert Comon & Steve Kremer November 19,2019

LSV, INRIA Nancy

This is NOT an introduction to security

Probabilistic programs over finite fields Loosely speaking, a program:

- receives input values inside a finite fields,
- performs random sampling,
- performs operations, branchings, ..., (no loops)
- returns some values inside the finite field.

Probabilistic programs over finite fields Loosely speaking, a program:

- receives input values inside a finite fields,
- performs random sampling,
- performs operations, branchings, ..., (no loops)
- returns some values inside the finite field.

 \hookrightarrow Verifications for such programs ?

• EQUIV: Are two programs equivalent ?

- EQUIV: Are two programs equivalent ?
- INDEP: Are two programs independent ?

- EQUIV: Are two programs equivalent ?
- INDEP: Are two programs independent ?
- MAJ: Can we bound the probability of an event inside a program ?

- EQUIV: Are two programs equivalent ?
- INDEP: Are two programs independent ?
- MAJ: Can we bound the probability of an event inside a program ?

Decidable ?

- EQUIV: Are two programs equivalent ?
- INDEP: Are two programs independent ?
- MAJ: Can we bound the probability of an event inside a program ?

Decidable ?

Given a finite field, everything is finite and can be computed.

- EQUIV: Are two programs equivalent ?
- INDEP: Are two programs independent ?
- MAJ: Can we bound the probability of an event inside a program ?

Decidable ?

Given a finite field, everything is finite and can be computed.

 \hookrightarrow What about the complexity ?

Uniform Verification of Probabilistic Programs

Uniform Decisions problems

Given probabilistic programs over \mathbb{F}_2 (booleans), using \oplus and $\wedge,$ are they equivalent for all length of bitstrings ?

Given probabilistic programs over \mathbb{F}_2 (booleans), using \oplus and $\wedge,$ are they equivalent for all length of bitstrings ?

 $EQUIV_{2^{\infty}}$

input: two programs over \mathbb{F}_2

question: for any $k \geq 1$, are the programs equivalent over \mathbb{F}_{2^k} ?

Given probabilistic programs over \mathbb{F}_2 (booleans), using \oplus and $\wedge,$ are they equivalent for all length of bitstrings ?

 $\mathsf{EQUIV}_{2^\infty}$

input: two programs over \mathbb{F}_2

question: for any $k\geq 1$, are the programs equivalent over \mathbb{F}_{2^k} ?

 \hookrightarrow the length of the bitstrings could be a security parameter

Given probabilistic programs over \mathbb{F}_2 (booleans), using \oplus and $\wedge,$ are they equivalent for all length of bitstrings ?

 $EQUIV_{2^{\infty}}$

input: two programs over \mathbb{F}_2

question: for any $k\geq 1$, are the programs equivalent over \mathbb{F}_{2^k} ?

 \hookrightarrow the length of the bitstrings could be a security parameter

Decidable ?

Given probabilistic programs over \mathbb{F}_2 (booleans), using \oplus and $\wedge,$ are they equivalent for all length of bitstrings ?

 $\mathsf{EQUIV}_{2^\infty}$

input: two programs over \mathbb{F}_2

question: for any $k \geq 1$, are the programs equivalent over \mathbb{F}_{2^k} ?

 \hookrightarrow the length of the bitstrings could be a security parameter

Decidable ?

There is an infinite number of cases to check, not so trivial anymore...

 $\mathsf{INDEP}_q \Leftrightarrow \mathsf{EQUIV}_q$

 $\begin{aligned} \mathsf{INDEP}_q \Leftrightarrow \mathsf{EQUIV}_q \\ \mathsf{NI}-\mathsf{EQUIV}_q \Leftrightarrow \mathsf{EQUIV}_q \end{aligned}$

 $\begin{aligned} \mathsf{INDEP}_q \Leftrightarrow \mathsf{EQUIV}_q \\ \mathsf{NI}-\mathsf{EQUIV}_q \Leftrightarrow \mathsf{EQUIV}_q \end{aligned}$

 $\begin{aligned} \mathsf{INDEP}_q \Leftrightarrow \mathsf{EQUIV}_q \\ \mathsf{NI}-\mathsf{EQUIV}_q \Leftrightarrow \mathsf{EQUIV}_q \end{aligned}$

	EQUIV _x	$NI - MAJ_x$	MAJ_x
x = q	$coNP^{C_=P}$ -complete	PP-complete	$coNP^{PP}$ -complete
$x = q^{\infty}$	EXP coNP ^{C_P} -hard	$\leq_{EXP} POSITIVITY$?

Complexity Menu¹ Formal definitions *** Definition of C_{-P} EQUIV_{*a*} is $coNP^{C_{=}P}$ -complete *** Decidability of EQUIV_{a^{∞}} (without inputs/conditionals)

¹Familiarity with coNP complexity, completeness and oracles TM appreciated.

Complexity Menu¹ Formal definitions * * *Definition of C=P EQUIV_q is coNP^{C=P}-complete * * *Decidability of EQUIV_q[∞] (without inputs/conditionals) Decidability Menu Formal definitions $\star \star \star$ Removing the inputs Decidability of EQUIV_q $_{\infty}$ (without inputs/conditionals) Removing the conditionals

¹Familiarity with coNP complexity, completeness and oracles TM appreciated.

Formal definitions

Classically, p denotes a prime number, $q = p^k$ a prime power.

Classically, p denotes a prime number, $q = p^k$ a prime power. There is a unique finite field for each size. Classically, p denotes a prime number, $q = p^k$ a prime power. There is a unique finite field for each size.

Prime finite field

 $\mathbb{F}_p \simeq \mathbb{Z}/p\mathbb{Z}$ (integers modulo p)

Classically, p denotes a prime number, $q = p^k$ a prime power. There is a unique finite field for each size.

Prime finite field

 $\mathbb{F}_p \simeq \mathbb{Z}/p\mathbb{Z}$ (integers modulo p)

Finite fields

With α indeterminate and $P \in \mathbb{F}_{p}[\alpha]$ an irreducible polynomial of degree k:

 $\mathbb{F}_q \simeq \mathbb{F}_p[\alpha] / P(\alpha)$

We consider in this talk:

 $\begin{array}{ll} e & ::= & S & & \text{a polynomial over } \mathbb{F}_q[I \uplus R] \\ & | & \text{if } S = 0 \text{ then } e_1 \text{ else } e_2 & \text{conditionals} \end{array}$

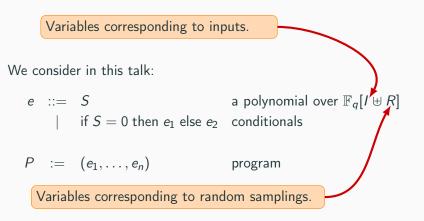
 $P := (e_1, \ldots, e_n)$ program

Variables corresponding to inputs.

We consider in this talk:

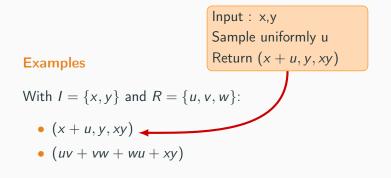
 $e ::= S \qquad \text{a polynomial over } \mathbb{F}_q[I \uplus R]$ $| \quad \text{if } S = 0 \text{ then } e_1 \text{ else } e_2 \quad \text{conditionals}$

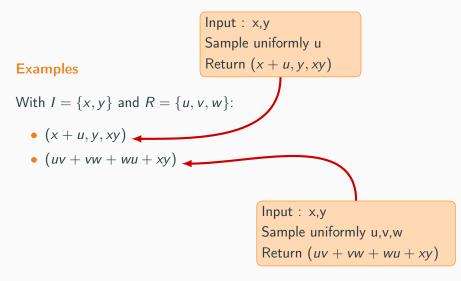
$$P := (e_1, \dots, e_n)$$
 program



Examples

With $I = \{x, y\}$ and $R = \{u, v, w\}$:





We denote $\mathcal{P}_q(I, R)$ the set of programs with input variables I and random variables R, and |P| the arity of P.

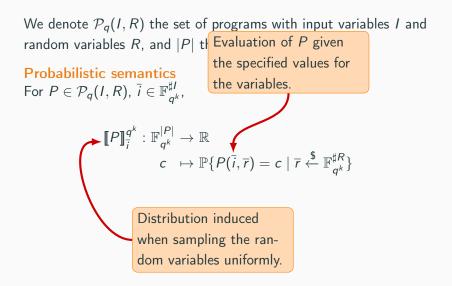
We denote $\mathcal{P}_q(I, R)$ the set of programs with input variables I and random variables R, and |P| the arity of P.

Probabilistic semantics For $P \in \mathcal{P}_q(I, R)$, $\overline{i} \in \mathbb{F}_{q^k}^{\sharp I}$,

$$\llbracket P \rrbracket_{\overline{i}}^{q^{k}} : \mathbb{F}_{q^{k}}^{|P|} \to \mathbb{R}$$

$$c \quad \mapsto \mathbb{P}\{P(\overline{i}, \overline{r}) = c \mid \overline{r} \xleftarrow{\$} \mathbb{F}_{q^{k}}^{\sharp R}\}$$

We denote $\mathcal{P}_q(I, R)$ the set of programs with input variables I and random variables R, and |P| the Evaluation of P given the specified values for the variables. For $P \in \mathcal{P}_q(I, R)$, $\overline{i} \in \mathbb{F}_{q^k}^{\sharp I}$, the variables. $\llbracket P \rrbracket_{\overline{i}}^{q^k} : \mathbb{F}_{q^k}^{|P|} \to \mathbb{R}$ $c \mapsto \mathbb{P}\{P(\overline{i}, \overline{r}) = c \mid \overline{r} \stackrel{\$}{\leftarrow} \mathbb{F}_{q^k}^{\sharp R}\}$



Over the booleans With $I = \{i\}$ and $R = \{r\}$,

$$\llbracket r \rrbracket^2 : 0 \mapsto \frac{1}{2} \\ 1 \mapsto \frac{1}{2}$$

Over the booleans With $I = \{i\}$ and $R = \{r\}$, $\llbracket r \rrbracket^2 : 0 \mapsto \frac{1}{2}$ $1 \mapsto \frac{1}{2}$ $\llbracket ir \rrbracket^2_1 : 0 \mapsto \frac{1}{2}$ $\llbracket ir \rrbracket^2_0 : 0 \mapsto 1$ $1 \mapsto \frac{1}{2}$ $I \mapsto 0$

Equivalence

$$egin{aligned} & P pprox_{q^k} & Q \ & \Leftrightarrow \ & orall ar{i} \in \mathbb{F}_{q^k}^{\sharp I}. \ \llbracket P
brace_{ar{i}}^{q^k} = \llbracket Q
brace_{ar{i}}^{q^k} \end{aligned}$$

Equivalence

$$egin{aligned} & P pprox_{q^k} & Q \ & \Leftrightarrow \ & orall ar{i} \in \mathbb{F}_{q^k}^{\sharp I}. \ \llbracket P
brace_{ar{i}}^{q^k} = \llbracket Q
brace_{ar{i}}^{q^k} \end{aligned}$$

Uniform Equivalence

$$egin{array}{c} Ppprox_{q^{\infty}} & Q \ \Leftrightarrow \ orall k\geq 1. \ Ppprox_{q^k} & Q \end{array}$$

The complexity of equivalence

SAT

input: ϕ a CNF boolean formula question: Is ϕ true for some valuation ?

SAT

input: ϕ a CNF boolean formula

question: Is ϕ true for some valuation ?

- L is in NP if
 - there exists a non deterministic TM, such that

 $x \in L \Leftrightarrow M(x)$ has at least one accepting path

SAT

input: ϕ a CNF boolean formula question: Is ϕ true for some valuation ?

- L is in NP if
 - there exists a non deterministic TM, such that

 $x \in L \Leftrightarrow M(x)$ has at least one accepting path

• there exists a probabilistic TM, such that

 $x \in L \Leftrightarrow M(x)$ accepts with non zero probability

halfSAT

input: ϕ a CNF boolean formula

question: Is ϕ true for for exactly half of its valuations ?

halfSAT

input: ϕ a CNF boolean formula

question: Is ϕ true for for exactly half of its valuations ?

- L is in $C_{=}P$ if
 - there exists a non deterministic TM, such that

 $x \in L \Leftrightarrow$ half of the paths of M(x) are acceptings ones

halfSAT

input: ϕ a CNF boolean formula

question: Is ϕ true for for exactly half of its valuations ?

- L is in $C_{=}P$ if
 - there exists a non deterministic TM, such that

 $x \in L \Leftrightarrow$ half of the paths of M(x) are acceptings ones

• there exists a probabilistic TM, such that

$$x \in L \Leftrightarrow M(x)$$
 accepts with probability $\frac{1}{2}$

A-halfSAT

input: $\phi(X, Y)$ a CNF boolean formula

question: For any valuation of Y,

is ϕ true for for exactly half of the valuations of X ?

A-halfSAT

input: $\phi(X, Y)$ a CNF boolean formula

question: For any valuation of Y,

is ϕ true for for exactly half of the valuations of X ?

L is in $coNP^{C_{=}P}$ if

A-halfSAT

input: $\phi(X, Y)$ a CNF boolean formula

question: For any valuation of Y,

is ϕ true for for exactly half of the valuations of X ?

- L is in $coNP^{C_{=}P}$ if
 - There exists a non deterministic TM with an oracle deciding problems in C₌P, such that

 $x \in L \Leftrightarrow$ all the paths of M(x) are acceptings ones

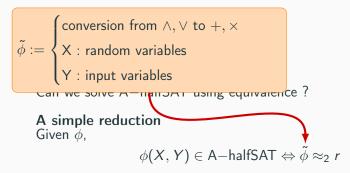
Can we solve A-halfSAT using equivalence ?

Can we solve A-halfSAT using equivalence ?

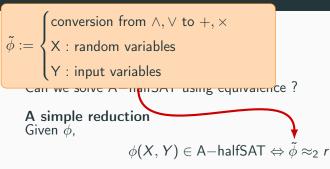
A simple reduction Given ϕ ,

$$\phi(X,Y) \in \mathsf{A-halfSAT} \Leftrightarrow \tilde{\phi} \approx_2 r$$

Hardness



Hardness



 $\hookrightarrow \mathsf{EQUIV}_2$ is $\mathsf{coNP}^{\mathsf{C}=\mathsf{P}}$ -hard

$$M(P, Q, c, \overline{i}) :=$$

$$x \stackrel{\$}{\leftarrow} \{0, 1\}$$

$$\overline{r} = (r_1, \dots, r_m) \stackrel{\$}{\leftarrow} \mathbb{F}_q^m$$
if $x = 0$ then
if $P(\overline{i}, \overline{r}) = c$ then ACCEPT else REJECT
else
if $Q(\overline{i}, \overline{r}) = c$ then ACCEPT else REJECT

$$M(P, Q, c, \overline{i}) := \begin{cases} x \stackrel{\$}{\leftarrow} \{0, 1\} \\ \overline{r} = (r_1, \dots, r_m) \stackrel{\$}{\leftarrow} \mathbb{F}_q^m \\ \text{if } x = 0 \text{ then} \\ \text{if } P(\overline{i}, \overline{r}) = c \text{ then ACCEPT else REJECT} \\ \text{else} \\ \text{if } Q(\overline{i}, \overline{r}) = c \text{ then ACCEPT else REJECT} \end{cases}$$

$$\mathbb{P}_{accept}(P,Q,c,\overline{i}) = \frac{\llbracket P \rrbracket_{\overline{i}}^{q}(c) + \llbracket Q \rrbracket_{\overline{i}}^{q}(c)}{2}$$

$$M(P, Q, c, \overline{i}) :=$$

$$x \stackrel{\$}{\leftarrow} \{0, 1\}$$

$$\overline{r} = (r_1, \dots, r_m) \stackrel{\$}{\leftarrow} \mathbb{F}_q^m$$
if $x = 0$ then
if $P(\overline{i}, \overline{r}) = c$ then ACCEPT else REJECT
else
if $Q(\overline{i}, \overline{r}) = c$ then ACCEPT else REJECT

$$\mathbb{P}_{accept}(P, Q, c, \overline{i}) = \frac{\llbracket P \rrbracket_{\overline{i}}^q(c) + \llbracket Q \rrbracket_{\overline{i}}^q(c)}{2}$$

Probablity that *P* equals *c* on input \overline{i}

$$M(P, Q, c, \overline{i}) := \begin{vmatrix} x \stackrel{\$}{\leftarrow} \{0, 1\} \\ \overline{r} = (r_1, \dots, r_m) \stackrel{\$}{\leftarrow} \mathbb{F}_q^m \\ \text{if } x = 0 \text{ then} \\ \text{if } P(\overline{i}, \overline{r}) = c \text{ then ACCEPT else REJECT} \\ \text{else} \\ \text{if } Q(\overline{i}, \overline{r}) = c \text{ then ACCEPT else REJECT} \end{cases}$$

$$\mathbb{P}_{accept}(P,Q,c,\bar{i}) = \frac{\llbracket P \rrbracket_{\bar{i}}^{q}(c) + \llbracket Q \rrbracket_{\bar{i}}^{q}(c)}{2}$$

$$M(P, Q, c, \overline{i}) := \begin{cases} x \stackrel{\$}{\leftarrow} \{0, 1\} \\ \overline{r} = (r_1, \dots, r_m) \stackrel{\$}{\leftarrow} \mathbb{F}_q^m \\ \text{if } x = 0 \text{ then} \\ \text{if } P(\overline{i}, \overline{r}) = c \text{ then ACCEPT else REJECT} \\ \text{else} \\ \text{if } Q(\overline{i}, \overline{r}) = c \text{ then ACCEPT else REJECT} \end{cases}$$

$$\mathbb{P}_{accept}(P,Q,c,\bar{i}) = \frac{\llbracket P \rrbracket_{\bar{i}}^{q}(c) + \llbracket Q \rrbracket_{\bar{i}}^{q}(c)}{2}$$

$$M(P, Q, c, \overline{i}) :=$$

$$x \stackrel{\$}{\leftarrow} \{0, 1\}$$

$$\overline{r} = (r_1, \dots, r_m) \stackrel{\$}{\leftarrow} \mathbb{F}_q^m$$
if $x = 0$ then
if $P(\overline{i}, \overline{r}) = c$ then ACCEPT else REJECT
else
if $Q(\overline{i}, \overline{r}) \neq c$ then ACCEPT else REJECT

$$\mathbb{P}_{accept}(P,Q,c,\bar{i}) = \frac{\llbracket P \rrbracket_{\bar{i}}^{q}(c) + ?}{2}$$

$$M(P, Q, c, \overline{i}) := \begin{cases} x \stackrel{\$}{\leftarrow} \{0, 1\} \\ \overline{r} = (r_1, \dots, r_m) \stackrel{\$}{\leftarrow} \mathbb{F}_q^m \\ \text{if } x = 0 \text{ then} \\ \text{if } P(\overline{i}, \overline{r}) = c \text{ then ACCEPT else REJECT} \\ \text{else} \\ \text{if } Q(\overline{i}, \overline{r}) \neq c \text{ then ACCEPT else REJECT} \end{cases}$$

$$\mathbb{P}_{accept}(P, Q, c, \overline{i}) = \frac{\llbracket P \rrbracket_{\overline{i}}^{q}(c) + (1 - \llbracket Q \rrbracket_{\overline{i}}^{q}(c))}{2}$$

$$\mathbb{P}_{accept}(P, Q, c, \overline{i}) = \frac{1}{2} + \frac{\llbracket P \rrbracket_{\overline{i}}^{q}(c) - \llbracket Q \rrbracket_{\overline{i}}^{q}(c)}{2}$$

$$\mathbb{P}_{accept}(P,Q,c,\bar{i}) = \frac{1}{2} + \frac{\llbracket P \rrbracket_{\bar{i}}^{q}(c) - \llbracket Q \rrbracket_{\bar{i}}^{q}(c)}{2}$$

$$\mathbb{P}_{accept}(P,Q,c,\overline{i}) = \frac{1}{2} \Leftrightarrow \llbracket P \rrbracket_{\overline{i}}^{q}(c) = \llbracket Q \rrbracket_{\overline{i}}^{q}(c)$$

$$\mathbb{P}_{accept}(P,Q,c,\bar{i}) = \frac{1}{2} + \frac{\llbracket P \rrbracket_{\bar{i}}^q(c) - \llbracket Q \rrbracket_{\bar{i}}^q(c)}{2}$$

$$\mathbb{P}_{accept}(P,Q,c,ar{i}) = rac{1}{2} \Leftrightarrow \llbracket P
rbracket_{ar{i}}^q(c) = \llbracket Q
rbracket_{ar{i}}^q(c)$$

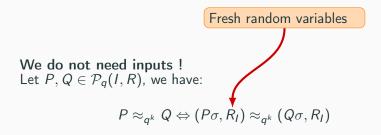
 $\hookrightarrow \text{ Given } P, Q, c, \overline{i}, \text{ deciding if } \llbracket P \rrbracket_{\overline{i}}^{q}(c) = \llbracket Q \rrbracket_{\overline{i}}^{q}(c) \text{ is in } C_{=} \mathsf{P}.$

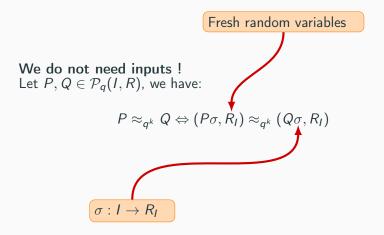
$$P \approx_q Q \Leftrightarrow \forall \overline{i} \in \mathbb{F}_q^m, \forall c \in \mathbb{F}_q^{|P|}, \llbracket P \rrbracket_{\overline{i}}^q(c) = \llbracket Q \rrbracket_{\overline{i}}^q(c)$$
$$\hookrightarrow \mathsf{EQUIV}_q \text{ is coNP}^{\mathsf{C}=\mathsf{P}}\text{-complete}$$

Deciding uniform equivalence

We do not need inputs ! Let $P, Q \in \mathcal{P}_q(I, R)$, we have:

$$P \approx_{q^k} Q \Leftrightarrow (P\sigma, R_I) \approx_{q^k} (Q\sigma, R_I)$$





We do not need inputs !

$$P \approx_{q^k} Q \Leftrightarrow (P\sigma, R_I) \approx_{q^k} (Q\sigma, R_I)$$

$$P \approx_{q^k} Q \Leftrightarrow (P\sigma, R_I) \approx_{q^k} (Q\sigma, R_I)$$

 $P \approx_{q^k} Q$

$$P \approx_{q^k} Q \Leftrightarrow (P\sigma, R_I) \approx_{q^k} (Q\sigma, R_I)$$

$$\begin{array}{l} P\approx_{q^k} Q\\ \Leftrightarrow \forall \overline{i}\in \mathbb{F}_{q^k}^{\sharp l}. \ \llbracket P \rrbracket_{\overline{i}}^{q^k} = \llbracket Q \rrbracket_{\overline{i}}^{q^k} \end{array}$$

$$P \approx_{q^k} Q \Leftrightarrow (P\sigma, R_I) \approx_{q^k} (Q\sigma, R_I)$$

$$P \approx_{q^{k}} Q$$

$$\Leftrightarrow \forall \overline{i} \in \mathbb{F}_{q^{k}}^{\sharp I}. \llbracket P \rrbracket_{\overline{i}}^{q^{k}} = \llbracket Q \rrbracket_{\overline{i}}^{q^{k}}$$

$$\Leftrightarrow \forall \overline{i} \in \mathbb{F}_{q^{k}}^{\sharp I}. \forall \overline{c} \in \mathbb{F}_{q^{k}}^{n}. \llbracket P \rrbracket_{\overline{i}}^{q^{k}}(\overline{c}) = \llbracket Q \rrbracket_{\overline{i}}^{q^{k}}(\overline{c})$$

$$P \approx_{q^k} Q \Leftrightarrow (P\sigma, R_I) \approx_{q^k} (Q\sigma, R_I)$$

$$P \approx_{q^{k}} Q$$

$$\Leftrightarrow \forall \overline{i} \in \mathbb{F}_{q^{k}}^{\sharp I}. \llbracket P \rrbracket_{\overline{i}}^{q^{k}} = \llbracket Q \rrbracket_{\overline{i}}^{q^{k}}$$

$$\Leftrightarrow \forall \overline{i} \in \mathbb{F}_{q^{k}}^{\sharp I}. \forall \overline{c} \in \mathbb{F}_{q^{k}}^{n}. \llbracket P \rrbracket_{\overline{i}}^{q^{k}}(\overline{c}) = \llbracket Q \rrbracket_{\overline{i}}^{q^{k}}(\overline{c})$$

$$\Leftrightarrow \forall \overline{i} \in \mathbb{F}_{q^{k}}^{\sharp I}. \forall \overline{c} \in \mathbb{F}_{q^{k}}^{n}. \llbracket P \rrbracket_{\overline{i}}^{q^{k}}(c, \overline{i}) = \llbracket (Q\sigma, R_{I}) \rrbracket_{\overline{i}}^{q^{k}}(c, \overline{i})$$

$$P \approx_{q^k} Q \Leftrightarrow (P\sigma, R_I) \approx_{q^k} (Q\sigma, R_I)$$

$$P \approx_{q^{k}} Q$$

$$\Leftrightarrow \forall \overline{i} \in \mathbb{F}_{q^{k}}^{\sharp I}. \llbracket P \rrbracket_{\overline{i}}^{q^{k}} = \llbracket Q \rrbracket_{\overline{i}}^{q^{k}}$$

$$\Leftrightarrow \forall \overline{i} \in \mathbb{F}_{q^{k}}^{\sharp I}. \forall \overline{c} \in \mathbb{F}_{q^{k}}^{n}. \llbracket P \rrbracket_{\overline{i}}^{q^{k}}(\overline{c}) = \llbracket Q \rrbracket_{\overline{i}}^{q^{k}}(\overline{c})$$

$$\Leftrightarrow \forall \overline{i} \in \mathbb{F}_{q^{k}}^{\sharp I}. \forall \overline{c} \in \mathbb{F}_{q^{k}}^{n} \llbracket (P\sigma, R_{I}) \rrbracket_{\overline{i}}^{q^{k}}(c, \overline{i}) = \llbracket (Q\sigma, R_{I}) \rrbracket_{\overline{i}}^{q^{k}}(c, \overline{i})$$

$$\Leftrightarrow \forall c' \in \mathbb{F}_{q^{k}}^{n+\sharp I} \llbracket (P\sigma, R_{I}) \rrbracket_{q^{k}}^{q^{k}}(c') = \llbracket (Q\sigma, R_{I}) \rrbracket_{q^{k}}^{q^{k}}(c')$$

$$P \approx_{q^k} Q \Leftrightarrow (P\sigma, R_I) \approx_{q^k} (Q\sigma, R_I)$$

$$P \approx_{q^{k}} Q$$

$$\Leftrightarrow \forall \overline{i} \in \mathbb{F}_{q^{k}}^{\sharp I}. \llbracket P \rrbracket_{\overline{i}}^{q^{k}} = \llbracket Q \rrbracket_{\overline{i}}^{q^{k}}$$

$$\Leftrightarrow \forall \overline{i} \in \mathbb{F}_{q^{k}}^{\sharp I}. \forall \overline{c} \in \mathbb{F}_{q^{k}}^{n}. \llbracket P \rrbracket_{\overline{i}}^{q^{k}}(\overline{c}) = \llbracket Q \rrbracket_{\overline{i}}^{q^{k}}(\overline{c})$$

$$\Leftrightarrow \forall \overline{i} \in \mathbb{F}_{q^{k}}^{\sharp I}. \forall \overline{c} \in \mathbb{F}_{q^{k}}^{n}. \llbracket (P\sigma, R_{I}) \rrbracket_{\overline{i}}^{q^{k}}(c, \overline{i}) = \llbracket (Q\sigma, R_{I}) \rrbracket_{\overline{i}}^{q^{k}}(c, \overline{i})$$

$$\Leftrightarrow \forall c' \in \mathbb{F}_{q^{k}}^{n+\sharp I} \llbracket (P\sigma, R_{I}) \rrbracket^{q^{k}}(c') = \llbracket (Q\sigma, R_{I}) \rrbracket^{q^{k}}(c')$$

$$\Leftrightarrow (P\sigma, R_{I}) \approx_{q^{k}} (Q\sigma, R_{I})$$

Straight line programs Programs without conditionals $P, Q \in \mathcal{P}_q(\emptyset, R)$ **Straight line programs** Programs without conditionals $P, Q \in \mathcal{P}_q(\emptyset, R)$

 $P, Q \in (\mathbb{F}_q[R])^n$

Straight line programs Programs without conditionals $P, Q \in \mathcal{P}_q(\emptyset, R)$

$$P, Q \in (\mathbb{F}_q[R])^n$$

The mathematical question

$$P \approx_{q^{\infty}} Q$$

$$\Leftrightarrow$$

$$\forall \overline{c} \in \mathbb{F}_{q^{k}}^{n}. \ \forall k. \ \sharp\{\overline{r} \in \mathbb{F}_{q^{k}}^{\sharp R} | P(\overline{r}) = \overline{c}\} = \sharp\{\overline{r} \in \mathbb{F}_{q^{k}}^{\sharp R} | Q(\overline{r}) = \overline{c}\}$$

The local zeta function For any $P \in \mathbb{F}_q[R]^n$,

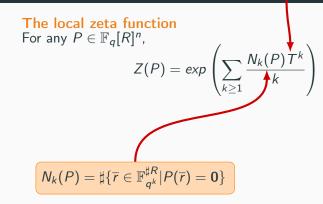
$$Z(P) = exp\left(\sum_{k\geq 1} \frac{N_k(P)T^k}{k}\right)$$

An indeterminate

The local zeta function For any $P \in \mathbb{F}_q[R]^n$,

$$Z(P) = exp\left(\sum_{k\geq 1} \frac{N_k(P)T^k}{k}\right)$$

An indeterminate



The local zeta function For any $P \in \mathbb{F}_q[R]^n$, $Z(P) = exp\left(\sum_{k \ge 1} \frac{N_k(P)T^k}{k}\right)$

Why is it interesting ? $Z(P) = Z(Q) \Leftrightarrow \forall k. \ \sharp\{\overline{r} \in \mathbb{F}_{q^k}^{\sharp R} | P(\overline{r}) = \mathbf{0}\} = \sharp\{\overline{r} \in \mathbb{F}_{q^k}^{\sharp R} | Q(\overline{r}) = \mathbf{0}\}$

The local zeta function For any $P \in \mathbb{F}_q[R]^n$, $Z(P) = exp\left(\sum_{k \ge 1} \frac{N_k(P)T^k}{k}\right)$

Why is it interesting ? $Z(P) = Z(Q) \Leftrightarrow \forall k. \ \sharp\{\bar{r} \in \mathbb{F}_{q^k}^{\sharp R} | P(\bar{r}) = \mathbf{0}\} = \sharp\{\bar{r} \in \mathbb{F}_{q^k}^{\sharp R} | Q(\bar{r}) = \mathbf{0}\}$

Black Magic By Well's conjecture (proven by Dwork), Z(P) is a rational function, and can thus be computed !

• using the local zeta function, we can decide if *P* and *Q* are equal to zero with the same probability on all extensions of a finite field;

- using the local zeta function, we can decide if *P* and *Q* are equal to zero with the same probability on all extensions of a finite field;
- with a bit of encoding, we can extend this to all values, and check the equality of the distributions.

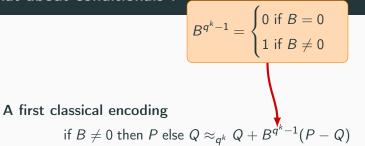
- using the local zeta function, we can decide if *P* and *Q* are equal to zero with the same probability on all extensions of a finite field;
- with a bit of encoding, we can extend this to all values, and check the equality of the distributions.

 \hookrightarrow We can decide if $P \approx_{q^{\infty}} Q$!

A first classical encoding

 $\text{if }B\neq 0 \text{ then }P \text{ else }Q\approx_{q^k}Q+B^{q^k-1}(P-Q)$

What about conditionals ?



A first classical encoding

 $\text{if }B\neq 0 \text{ then }P \text{ else }Q\approx_{q^k}Q+B^{q^k-1}(P-Q)$

It depends on k...

- *B* has an inverse if and only if $B \neq 0$,
- $\exists t, Bt 1 = 0$ if and only if $B \neq 0$,
- for any variable *t* and polynomial *B*:

$$(B(Bt-1)=0 \wedge t(Bt-1)=0) \Leftrightarrow t=B^{q^k-2}$$

- *B* has an inverse if and only if $B \neq 0$,
- $\exists t, Bt 1 = 0$ if and only if $B \neq 0$,
- for any variable *t* and polynomial *B*:

$$(B(Bt-1)=0 \wedge t(Bt-1)=0) \Leftrightarrow t=B^{q^k-2}$$

 $\sharp\{\overline{r}\in\mathbb{F}_{q^k}^m,t\in\mathbb{F}_{q^k}\mid (Q+tB(P-Q),B(Bt-1),t(Bt-1))=\mathbf{0}\}$

- *B* has an inverse if and only if $B \neq 0$,
- $\exists t, Bt 1 = 0$ if and only if $B \neq 0$,
- for any variable t and polynomial B:

$$(B(Bt-1)=0 \wedge t(Bt-1)=0) \Leftrightarrow t=B^{q^k-2}$$

$$\begin{split} & \sharp\{\overline{r} \in \mathbb{F}_{q^k}^m, t \in \mathbb{F}_{q^k} \mid (Q + tB(P - Q), B(Bt - 1), t(Bt - 1)) = \mathbf{0}\} \\ & = \sharp\{\overline{r} \in \mathbb{F}_{q^k}^m \mid Q + B^{q^k - 1}(P - Q) = \mathbf{0}\} \end{split}$$

- *B* has an inverse if and only if $B \neq 0$,
- $\exists t, Bt 1 = 0$ if and only if $B \neq 0$,
- for any variable *t* and polynomial *B*:

$$(B(Bt-1)=0 \wedge t(Bt-1)=0) \Leftrightarrow t=B^{q^k-2}$$

$$\begin{split} & \sharp\{\overline{r} \in \mathbb{F}_{q^{k}}^{m}, t \in \mathbb{F}_{q^{k}} \mid (Q + tB(P - Q), B(Bt - 1), t(Bt - 1)) = \mathbf{0}\} \\ & = \sharp\{\overline{r} \in \mathbb{F}_{q^{k}}^{m} \mid Q + B^{q^{k} - 1}(P - Q) = \mathbf{0}\} \end{split}$$

 \hookrightarrow We can use this inside N_k

Conclusions

Uniform independence and equivalence

Decidable !

Conclusions

Uniform independence and equivalence

Decidable !

Independence and equivalence

 $\mathsf{coNP}^{\mathsf{C}_{=}\mathsf{P}}\text{-}\mathsf{complete}...$

Uniform independence and equivalence

Decidable !

Independence and equivalence

 $\mathsf{coNP}^{\mathsf{C}_{=}\mathsf{P}}\text{-}\mathsf{complete}...$

Bounding the probability of an event

 $coNP^{PP}$ -complete in the finite case, reduces to the POSITIVITY problem in the uniform case.

Uniform independence and equivalence

Decidable !

Independence and equivalence

 $\mathsf{coNP}^{\mathsf{C}_{=}\mathsf{P}}\text{-}\mathsf{complete}...$

Bounding the probability of an event coNP^{PP}-complete in the finite case, reduces to the POSITIVITY problem in the uniform case.

> Given a sequence defined by a recurrence equations, are all the term of the sequence positive ?

Uniform independence and equivalence

Decidable !

Independence and equivalence

 $\mathsf{coNP}^{\mathsf{C}_{=}\mathsf{P}}\text{-}\mathsf{complete}...$

Bounding the probability of an event coNP^{PP}-complete in the finite case, reduces to the POSITIVITY problem in the uniform case.

Which Programs ?

- Support of the observe primitive.
- sample variables inside a spolynomials,
- conditionals.

Given a sequence defined by a recurrence equations, are all the term of the sequence positive ?

The big question

Is the uniform problem strictly harder than the non uniform one ?

The big question

Is the uniform problem strictly harder than the non uniform one ?

Other open questions

- Can we support loops ?
- Is POSITIVITY decidable ?
- Can we extend to other probabilistic properties ?