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Probabilistic programs over finite fields
Loosely speaking, a program:

receives input values inside a finite fields,
e performs random sampling,
e performs operations, branchings, ..., (no loops)

e returns some values inside the finite field.

— Verifications for such programs ?
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Verification of Probabilistic programs

Decisions problems
e EQUIV: Are two programs equivalent ?
e INDEP: Are two programs independent 7

e MAJ: Can we bound the probability of an event inside a
program 7

Decidable ?

Given a finite field, everything is finite and can be computed.

— What about the complexity ?
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Uniform Verification of Probabilistic Programs

Uniform Decisions problems
Given probabilistic programs over F, (booleans), using & and A,
are they equivalent for all length of bitstrings 7

EQUIVyee

input: two programs over [Fy

question: for any k > 1, are the programs equivalent over Fyx ?

< the length of the bitstrings could be a security parameter

Decidable ?
There is an infinite number of cases to check, not so trivial

anymore...
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Probabilistic Programs over finite fields

Our contributions
INDEP, < EQUIV,
NI-EQUIV, < EQUIV,

EQUIV, NI — MAJ, MAJ,
x=q | coNP“-P-complete PP-complete coNPPP_complete
EXP
x = q* <gxp POSITIVITY ?
coNP“F-hard
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Decidability of EQUIV geo
(without inputs/conditionals)

! Familiarity with coNP complexity, completeness and oracles TM appreciated.
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Complexity Menu? Decidability Menu
Formal definitions Formal definitions
* K K * * K
Definition of C_P Removing the inputs
EQUIV, is coNP -F-complete Decidability of EQUIV g
* k% (without inputs/conditionals)
Decidability of EQUIV g Removing the conditionals

(without inputs/conditionals)

!Familiarity with coNP complexity, completeness and oracles TM appreciated.
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Quick reminders

Classically, p denotes a prime number, g = p¥ a prime power.
There is a unique finite field for each size.

Prime finite field
Fp ~ Z/pZ (integers modulo p)

Finite fields
With « indeterminate and P € Fp[a] an irreducible polynomial of

degree k:

Fq >~ Fpla]/P(a)
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Programs

Variables corresponding to inputs.

We consider in this talk:

e == S a polynomial over Fy[/'W R]

| if S=0then e else & conditionals

P = (e,...,en) program

Variables corresponding to random samplings.
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o (uv+ vw + wu + xy)
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Programs examples

Input : X,y
Sample uniformly u
Return (x + u,y,xy)

With | = {x,y} and R = {u,v,w}:

(x+u,y,xy)

(uv—i—vw—i—wu—i—xy)‘/\

Input : x,y
Sample uniformly u,v,w
Return (uv + vw + wu + xy)
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Semantics

We denote P,4(/, R) the set of programs with input variables / and
random variables R, and |P| tf Evaluation of P given

th ified values fi
Probabilistic semantics he Spe_c'b'le el e
For P ¢ Pq(/7 R), H= Filkr the variables.

ko o|P
[PIY: FS > R
¢ = P{P(i,7)=c |7 & FR}

Distribution induced
when sampling the ran-
dom variables uniformly.
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Some examples

Over the booleans
With | = {i} and R = {r},

[[r]]2:0b—>
1~

N N[=

[[ir]]% 10—
1

[ir]3:0— 1
1—0

NI N[
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Equivalence
Pmg Q
=4
vi € Fi. [P = Q)Y
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Decision problem

Equivalence
Pmg Q
=4
vi € Fi. [P = Q)Y

Uniform Equivalence
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The complexity of equivalence
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A small reminder

SAT

input: ¢ a CNF boolean formula
question: Is ¢ true for some valuation 7
Lis in NP if

e there exists a non deterministic TM, such that

x € L & M(x) has at least one accepting path

e there exists a probabilistic TM, such that
x € L < M(x) accepts with non zero probability

12
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The exact counting complexity class

halfSAT
input: ¢ a CNF boolean formula
question: Is ¢ true for for exactly half of its valuations ?
Lisin C_P if
e there exists a non deterministic TM, such that
x € L < half of the paths of M(x) are acceptings ones

e there exists a probabilistic TM, such that

1
x € L < M(x) accepts with probability 5

13



Some exotic complexity class

A—halfSAT

input: ¢(X,Y) a CNF boolean formula
question: For any valuation of Y,

is ¢ true for for exactly half of the valuations of X 7
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Some exotic complexity class

A—halfSAT

input: ¢(X,Y) a CNF boolean formula
question: For any valuation of Y,

is ¢ true for for exactly half of the valuations of X 7

Lis in coNP<=F if
e There exists a non deterministic TM with an oracle deciding
problems in C_P, such that

x € L < all the paths of M(x) are acceptings ones

14
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Can we solve A—halfSAT using equivalence ?
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@ 1= ¢ X : random variables

Y : input variables
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Hardness

conversion from A,V to +, x

¢ := < X : random variables

Y : input variables

Ldall vwT SUIVC ATTrglironnd UDIIIB C\.lul\ldlcllce ?

A simple reduction
Given ¢,

d(X,Y) € A—halfSAT & ¢ ~; r

15
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7:(r1,...,rm)<iFg’
if x =0 then
if P(i,7) = c then ACCEPT else REJECT
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[PI(c) + [QI(c)

IEDaccept(P7 Q7 C,7) = >
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M(P,Q,c,i) = Deterministic evaluation
x & 10,1}

F=(n,..ATm) < kg

if x =0 tpen

if P(i,7) = c then ACCEPT else REJECT
else

if Q(i,7) = c then ACCEPT else REJECT

P oceept (P, Q. C,,-)/[P]j’(C) er [QI(c)

Probablity that P equals ¢ on input i
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M(P,Q,c,i) :=

x & 0,1}
F=(rn,....rm) &Fg’
if x =0 then

if P(i,7) = c then ACCEPT else REJECT
else

if Q(i,7) # c then ACCEPT else REJECT

[PI9(c)+?

IEDaccept('Dv Q7 Cj) - 2
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M(P,Q,c,i) :=

x & 0,1}
F=(rn,....rm) &Fg’
if x =0 then

if P(i,7) = c then ACCEPT else REJECT
else

if Q(i,7) # c then ACCEPT else REJECT

[PI9(c) + (1 - [Q1%(c))

]P)accept(P; Q; CJ) = 2

17



7 Pl (c) — [QIF(c
]P’accept(P,Q’c7,'):;+[[ 7 ( )2[[ #(c)
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7 Pl (c) — [QIF(c
]P’accept(P,Q’c7,'):;+[[ 7 ( )2[[ #(c)

Paceepe(P, Q. 1) = 5 & [PIZ(0) = [Q12()
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7 Pl (c) — [QIF(c
]P’accept(P,Q’c7,'):;+[[ 7 ( )2[[ #(c)

Paceet(P, @, ,7) = 5 <+ [PI(9) = [Q(c)
< Given P, Q, c, i, deciding if [P]7(c) = [Q]!(c) is in C=P.

18



P g Q Vi€ FM Ve e Fy | [P]¥(c) = [QF(c)

— EQUIV, is coNPC’P—complete

19



Deciding uniform equivalence




The issue of inputs

We do not need inputs !
Let P, Q € Py(l, R), we have:

P =y Q < (Po,R) =g (Qo, R))



The issue of inputs

Fresh random variables

We do not need inputs !
Let P, Q € Py(l, R), we have:

P =y Q < (Po,R)) =g (Qo, Ry)



The issue of inputs

Fresh random variables

We do not need inputs !
Let P, Q € Py(l, R), we have:

P =y Q < (Po,R)) =g (Qa, R)

O'Z/—>R/
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The issue of inputs - Let's prove it

We do not need inputs !
P R gk Q< (PU, RI) R~ gk (QJ, R/)

P %qk Q
sVvic Fi’k. [[P]]If.’k [[Q]]qk
s Vie IFW Ve e Fr,. [[P]]q (c) = [[Q]]qk(f)
& Vie IFW Ve e IE‘”kl[(Pa R,)]];7 (c,i) = [[(Qa, RIS “(e,7)
& V! eFZ*W[[(Pa RN1¥ (') = [(Qa, R (<)
& (Po,Ry) =g (Qo, Ry)

21
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Uniform equivalence - restricted case

Straight line programs
Programs without conditionals P, Q € P4(0, R)

P, Q € (Fq[R])"

The mathematical question

P %qoo Q
=
Ve € 7. k. B{7 € FiR|P(7) = <} = #{7 € F'5|Q(F) = )
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k
Z(P)=exp (Z N(P)T )

Mathemagic ! An indeterminate
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The local zeta function
For any P € F4[R]",

k
Z(P)=exp (Z I\Ik('z)T>

k>1

Why is it interesting ?

Z(P) = Z(Q) © Vk. t{F € F:{|P(F) = 0} = #{F € F{¥| Q(7) = 0}

Black Magic
By Well's conjecture (proven by Dwork), Z(P) is a rational

function, and can thus be computed !
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In a Nuttshell

Uniform equivalence for straight line programs
For P, @ straight line programs,

e using the local zeta function, we can decide if P and Q are
equal to zero with the same probability on all extensions of a
finite field;

e with a bit of encoding, we can extend this to all values, and
check the equality of the distributions.

— We can decide if P =g Q!

24
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What about conditionals ?

g1 JOifB=0
1if B#0

A first classical encoding
if B #0then Pelse Q ~g Q + BY }(P - Q)
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What about conditionals ?

A first classical encoding
if B #0then Pelse Q ~g Q + BY }(P - Q)

It depends on k...

25



What about conditionals

The solution

e B has an inverse if and only if B # 0,
e Jt,Bt — 1 =0 if and only if B # 0,

e for any variable t and polynomial B:

(B(Bt—1)=0At(Bt—1)=0)<t= qu—2
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What about conditionals

The solution

e B has an inverse if and only if B # 0,
e Jt,Bt — 1 =0 if and only if B # 0,

e for any variable t and polynomial B:

(B(Bt—1)=0At(Bt—1)=0)<t= qu—2

H{reFoi, t € Foe [ (Q +tB(P - Q), B(Bt — 1), t(Bt — 1)) = 0}
=H{reFn|Q+B7" (P~ Q) =0}

< We can use this inside Ny
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Conclusions

Uniform independence and equivalence

Decidable !

Independence and equivalence

coNP®=P_complete...

Bounding the probability of an event
coNPPP_complete in the finite case, reduces to the POSITIVITY

problem in the uniform case.

Which Programs ?

e Support of the observe primitive.

. . Given a sequence defined by a recur-
e sample variables inside a ¢ )
. rence equations, are all the term of
polynomials, o
the sequence positive ?

e conditionals. 27



Some open questions

The big question
Is the uniform problem strictly harder than the non uniform one 7
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Some open questions

The big question
Is the uniform problem strictly harder than the non uniform one 7

Other open questions

e Can we support loops ?
e Is POSITIVITY decidable ?

e Can we extend to other probabilistic properties ?

28
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