
Decision problems on probabilistic programs
over finite fields and all their extensions

Charlie Jacomme supervised by Hubert Comon & Steve Kremer

November 19,2019

LSV, INRIA Nancy

This is NOT an introduction to
security

Probabilistic programs

Probabilistic programs over finite fields
Loosely speaking, a program:

• receives input values inside a finite fields,

• performs random sampling,

• performs operations, branchings, . . . , (no loops)

• returns some values inside the finite field.

↪→ Verifications for such programs ?

1

Probabilistic programs

Probabilistic programs over finite fields
Loosely speaking, a program:

• receives input values inside a finite fields,

• performs random sampling,

• performs operations, branchings, . . . , (no loops)

• returns some values inside the finite field.

↪→ Verifications for such programs ?

1

Verification of Probabilistic programs

Decisions problems

• EQUIV: Are two programs equivalent ?

• INDEP: Are two programs independent ?

• MAJ: Can we bound the probability of an event inside a
program ?

Decidable ?
Given a finite field, everything is finite and can be computed.

↪→ What about the complexity ?

2

Verification of Probabilistic programs

Decisions problems

• EQUIV: Are two programs equivalent ?

• INDEP: Are two programs independent ?

• MAJ: Can we bound the probability of an event inside a
program ?

Decidable ?
Given a finite field, everything is finite and can be computed.

↪→ What about the complexity ?

2

Verification of Probabilistic programs

Decisions problems

• EQUIV: Are two programs equivalent ?

• INDEP: Are two programs independent ?

• MAJ: Can we bound the probability of an event inside a
program ?

Decidable ?
Given a finite field, everything is finite and can be computed.

↪→ What about the complexity ?

2

Verification of Probabilistic programs

Decisions problems

• EQUIV: Are two programs equivalent ?

• INDEP: Are two programs independent ?

• MAJ: Can we bound the probability of an event inside a
program ?

Decidable ?
Given a finite field, everything is finite and can be computed.

↪→ What about the complexity ?

2

Verification of Probabilistic programs

Decisions problems

• EQUIV: Are two programs equivalent ?

• INDEP: Are two programs independent ?

• MAJ: Can we bound the probability of an event inside a
program ?

Decidable ?

Given a finite field, everything is finite and can be computed.

↪→ What about the complexity ?

2

Verification of Probabilistic programs

Decisions problems

• EQUIV: Are two programs equivalent ?

• INDEP: Are two programs independent ?

• MAJ: Can we bound the probability of an event inside a
program ?

Decidable ?
Given a finite field, everything is finite and can be computed.

↪→ What about the complexity ?

2

Verification of Probabilistic programs

Decisions problems

• EQUIV: Are two programs equivalent ?

• INDEP: Are two programs independent ?

• MAJ: Can we bound the probability of an event inside a
program ?

Decidable ?
Given a finite field, everything is finite and can be computed.

↪→ What about the complexity ?

2

Uniform Verification of Probabilistic Programs

Uniform Decisions problems

Given probabilistic programs over F2 (booleans), using ⊕ and ∧,
are they equivalent for all length of bitstrings ?

EQUIV2∞

input: two programs over F2

question: for any k ≥ 1, are the programs equivalent over F2k ?

↪→ the length of the bitstrings could be a security parameter

Decidable ?
There is an infinite number of cases to check, not so trivial
anymore...

3

Uniform Verification of Probabilistic Programs

Uniform Decisions problems
Given probabilistic programs over F2 (booleans), using ⊕ and ∧,
are they equivalent for all length of bitstrings ?

EQUIV2∞

input: two programs over F2

question: for any k ≥ 1, are the programs equivalent over F2k ?

↪→ the length of the bitstrings could be a security parameter

Decidable ?
There is an infinite number of cases to check, not so trivial
anymore...

3

Uniform Verification of Probabilistic Programs

Uniform Decisions problems
Given probabilistic programs over F2 (booleans), using ⊕ and ∧,
are they equivalent for all length of bitstrings ?

EQUIV2∞

input: two programs over F2

question: for any k ≥ 1, are the programs equivalent over F2k ?

↪→ the length of the bitstrings could be a security parameter

Decidable ?
There is an infinite number of cases to check, not so trivial
anymore...

3

Uniform Verification of Probabilistic Programs

Uniform Decisions problems
Given probabilistic programs over F2 (booleans), using ⊕ and ∧,
are they equivalent for all length of bitstrings ?

EQUIV2∞

input: two programs over F2

question: for any k ≥ 1, are the programs equivalent over F2k ?

↪→ the length of the bitstrings could be a security parameter

Decidable ?
There is an infinite number of cases to check, not so trivial
anymore...

3

Uniform Verification of Probabilistic Programs

Uniform Decisions problems
Given probabilistic programs over F2 (booleans), using ⊕ and ∧,
are they equivalent for all length of bitstrings ?

EQUIV2∞

input: two programs over F2

question: for any k ≥ 1, are the programs equivalent over F2k ?

↪→ the length of the bitstrings could be a security parameter

Decidable ?

There is an infinite number of cases to check, not so trivial
anymore...

3

Uniform Verification of Probabilistic Programs

Uniform Decisions problems
Given probabilistic programs over F2 (booleans), using ⊕ and ∧,
are they equivalent for all length of bitstrings ?

EQUIV2∞

input: two programs over F2

question: for any k ≥ 1, are the programs equivalent over F2k ?

↪→ the length of the bitstrings could be a security parameter

Decidable ?
There is an infinite number of cases to check, not so trivial
anymore...

3

Probabilistic Programs over finite fields

Our contributions
INDEPq ⇔ EQUIVq

NI−EQUIVq ⇔ EQUIVq

EQUIVx NI−MAJx MAJx

x = q coNPC=P-complete PP-complete coNPPP-complete

x = q∞
EXP

coNPC=P-hard
≤EXP POSITIVITY ?

4

Probabilistic Programs over finite fields

Our contributions
INDEPq ⇔ EQUIVq

NI−EQUIVq ⇔ EQUIVq

EQUIVx NI−MAJx MAJx

x = q coNPC=P-complete PP-complete coNPPP-complete

x = q∞
EXP

coNPC=P-hard
≤EXP POSITIVITY ?

4

Probabilistic Programs over finite fields

Our contributions
INDEPq ⇔ EQUIVq

NI−EQUIVq ⇔ EQUIVq

EQUIVx NI−MAJx MAJx

x = q coNPC=P-complete PP-complete coNPPP-complete

x = q∞
EXP

coNPC=P-hard
≤EXP POSITIVITY ?

4

Probabilistic Programs over finite fields

Our contributions
INDEPq ⇔ EQUIVq

NI−EQUIVq ⇔ EQUIVq

EQUIVx NI−MAJx MAJx

x = q coNPC=P-complete PP-complete coNPPP-complete

x = q∞
EXP

coNPC=P-hard
≤EXP POSITIVITY ?

4

Menus

Complexity Menu1

Formal definitions
? ? ?

Definition of C=P

EQUIVq is coNPC=P-complete
? ? ?

Decidability of EQUIVq∞

(without inputs/conditionals)

Decidability Menu

Formal definitions
? ? ?

Removing the inputs

Decidability of EQUIVq∞

(without inputs/conditionals)

Removing the conditionals

1Familiarity with coNP complexity, completeness and oracles TM appreciated.

5

Menus

Complexity Menu1

Formal definitions
? ? ?

Definition of C=P

EQUIVq is coNPC=P-complete
? ? ?

Decidability of EQUIVq∞

(without inputs/conditionals)

Decidability Menu

Formal definitions
? ? ?

Removing the inputs

Decidability of EQUIVq∞

(without inputs/conditionals)

Removing the conditionals

1Familiarity with coNP complexity, completeness and oracles TM appreciated.

5

Formal definitions

Quick reminders

Classically, p denotes a prime number, q = pk a prime power.

There is a unique finite field for each size.

Prime finite field

Fp ' Z/pZ (integers modulo p)

Finite fields
With α indeterminate and P ∈ Fp[α] an irreducible polynomial of
degree k :

Fq ' Fp[α]/P(α)

6

Quick reminders

Classically, p denotes a prime number, q = pk a prime power.
There is a unique finite field for each size.

Prime finite field

Fp ' Z/pZ (integers modulo p)

Finite fields
With α indeterminate and P ∈ Fp[α] an irreducible polynomial of
degree k :

Fq ' Fp[α]/P(α)

6

Quick reminders

Classically, p denotes a prime number, q = pk a prime power.
There is a unique finite field for each size.

Prime finite field

Fp ' Z/pZ (integers modulo p)

Finite fields
With α indeterminate and P ∈ Fp[α] an irreducible polynomial of
degree k :

Fq ' Fp[α]/P(α)

6

Quick reminders

Classically, p denotes a prime number, q = pk a prime power.
There is a unique finite field for each size.

Prime finite field

Fp ' Z/pZ (integers modulo p)

Finite fields
With α indeterminate and P ∈ Fp[α] an irreducible polynomial of
degree k :

Fq ' Fp[α]/P(α)

6

Programs

We consider in this talk:

e ::= S a polynomial over Fq[I] R]

| if S = 0 then e1 else e2 conditionals

P := (e1, . . . , en) program

7

Programs

We consider in this talk:

e ::= S a polynomial over Fq[I] R]

| if S = 0 then e1 else e2 conditionals

P := (e1, . . . , en) program

Variables corresponding to inputs.

7

Programs

We consider in this talk:

e ::= S a polynomial over Fq[I] R]

| if S = 0 then e1 else e2 conditionals

P := (e1, . . . , en) program

Variables corresponding to inputs.

Variables corresponding to random samplings.

7

Programs examples

Examples

With I = {x , y} and R = {u, v ,w}:

• (x + u, y , xy)

• (uv + vw + wu + xy)

8

Programs examples

Examples

With I = {x , y} and R = {u, v ,w}:

• (x + u, y , xy)

• (uv + vw + wu + xy)

Input : x,y
Sample uniformly u
Return (x + u, y , xy)

Input : x,y
Sample uniformly u,v,w
Return (uv + vw + wu + xy)

8

Programs examples

Examples

With I = {x , y} and R = {u, v ,w}:

• (x + u, y , xy)

• (uv + vw + wu + xy)

Input : x,y
Sample uniformly u
Return (x + u, y , xy)

Input : x,y
Sample uniformly u,v,w
Return (uv + vw + wu + xy)

8

Semantics

We denote Pq(I ,R) the set of programs with input variables I and
random variables R , and |P| the arity of P .

Probabilistic semantics
For P ∈ Pq(I ,R), i ∈ F]I

qk
,

[[P]]q
k

i
: F|P|

qk
→ R

c 7→ P{P(i , r) = c | r $←− F]R
qk
}

9

Semantics

We denote Pq(I ,R) the set of programs with input variables I and
random variables R , and |P| the arity of P .

Probabilistic semantics
For P ∈ Pq(I ,R), i ∈ F]I

qk
,

[[P]]q
k

i
: F|P|

qk
→ R

c 7→ P{P(i , r) = c | r $←− F]R
qk
}

9

Semantics

We denote Pq(I ,R) the set of programs with input variables I and
random variables R , and |P| the arity of P .

Probabilistic semantics
For P ∈ Pq(I ,R), i ∈ F]I

qk
,

[[P]]q
k

i
: F|P|

qk
→ R

c 7→ P{P(i , r) = c | r $←− F]R
qk
}

Evaluation of P given
the specified values for
the variables.

9

Semantics

We denote Pq(I ,R) the set of programs with input variables I and
random variables R , and |P| the arity of P .

Probabilistic semantics
For P ∈ Pq(I ,R), i ∈ F]I

qk
,

[[P]]q
k

i
: F|P|

qk
→ R

c 7→ P{P(i , r) = c | r $←− F]R
qk
}

Evaluation of P given
the specified values for
the variables.

Distribution induced
when sampling the ran-
dom variables uniformly.

9

Some examples

Over the booleans
With I = {i} and R = {r},

[[r]]2 : 0 7→ 1
2

1 7→ 1
2

[[ir]]21 : 0 7→ 1
2

1 7→ 1
2

[[ir]]20 : 0 7→ 1
1 7→ 0

10

Some examples

Over the booleans
With I = {i} and R = {r},

[[r]]2 : 0 7→ 1
2

1 7→ 1
2

[[ir]]21 : 0 7→ 1
2

1 7→ 1
2

[[ir]]20 : 0 7→ 1
1 7→ 0

10

Decision problem

Equivalence
P ≈qk Q

⇔
∀i ∈ F]I

qk
. [[P]]q

k

i
= [[Q]]q

k

i

Uniform Equivalence
P ≈q∞ Q

⇔
∀k ≥ 1. P ≈qk Q

11

Decision problem

Equivalence
P ≈qk Q

⇔
∀i ∈ F]I

qk
. [[P]]q

k

i
= [[Q]]q

k

i

Uniform Equivalence
P ≈q∞ Q

⇔
∀k ≥ 1. P ≈qk Q

11

The complexity of equivalence

A small reminder

SAT

input: φ a CNF boolean formula
question: Is φ true for some valuation ?

L is in NP if
• there exists a non deterministic TM, such that

x ∈ L⇔ M(x) has at least one accepting path

• there exists a probabilistic TM, such that

x ∈ L⇔ M(x) accepts with non zero probability

12

A small reminder

SAT

input: φ a CNF boolean formula
question: Is φ true for some valuation ?

L is in NP if
• there exists a non deterministic TM, such that

x ∈ L⇔ M(x) has at least one accepting path

• there exists a probabilistic TM, such that

x ∈ L⇔ M(x) accepts with non zero probability

12

A small reminder

SAT

input: φ a CNF boolean formula
question: Is φ true for some valuation ?

L is in NP if
• there exists a non deterministic TM, such that

x ∈ L⇔ M(x) has at least one accepting path

• there exists a probabilistic TM, such that

x ∈ L⇔ M(x) accepts with non zero probability

12

The exact counting complexity class

halfSAT

input: φ a CNF boolean formula
question: Is φ true for for exactly half of its valuations ?

L is in C=P if
• there exists a non deterministic TM, such that

x ∈ L⇔ half of the paths of M(x) are acceptings ones

• there exists a probabilistic TM, such that

x ∈ L⇔ M(x) accepts with probability
1
2

13

The exact counting complexity class

halfSAT

input: φ a CNF boolean formula
question: Is φ true for for exactly half of its valuations ?

L is in C=P if
• there exists a non deterministic TM, such that

x ∈ L⇔ half of the paths of M(x) are acceptings ones

• there exists a probabilistic TM, such that

x ∈ L⇔ M(x) accepts with probability
1
2

13

The exact counting complexity class

halfSAT

input: φ a CNF boolean formula
question: Is φ true for for exactly half of its valuations ?

L is in C=P if
• there exists a non deterministic TM, such that

x ∈ L⇔ half of the paths of M(x) are acceptings ones

• there exists a probabilistic TM, such that

x ∈ L⇔ M(x) accepts with probability
1
2

13

Some exotic complexity class

A−halfSAT

input: φ(X ,Y) a CNF boolean formula
question: For any valuation of Y ,

is φ true for for exactly half of the valuations of X ?

L is in coNPC=P if
• There exists a non deterministic TM with an oracle deciding

problems in C=P, such that

x ∈ L⇔ all the paths of M(x) are acceptings ones

14

Some exotic complexity class

A−halfSAT

input: φ(X ,Y) a CNF boolean formula
question: For any valuation of Y ,

is φ true for for exactly half of the valuations of X ?

L is in coNPC=P if

• There exists a non deterministic TM with an oracle deciding
problems in C=P, such that

x ∈ L⇔ all the paths of M(x) are acceptings ones

14

Some exotic complexity class

A−halfSAT

input: φ(X ,Y) a CNF boolean formula
question: For any valuation of Y ,

is φ true for for exactly half of the valuations of X ?

L is in coNPC=P if
• There exists a non deterministic TM with an oracle deciding

problems in C=P, such that

x ∈ L⇔ all the paths of M(x) are acceptings ones

14

Hardness

Can we solve A−halfSAT using equivalence ?

A simple reduction
Given φ,

φ(X ,Y) ∈ A−halfSAT⇔ φ̃ ≈2 r

15

Hardness

Can we solve A−halfSAT using equivalence ?

A simple reduction
Given φ,

φ(X ,Y) ∈ A−halfSAT⇔ φ̃ ≈2 r

15

Hardness

Can we solve A−halfSAT using equivalence ?

A simple reduction
Given φ,

φ(X ,Y) ∈ A−halfSAT⇔ φ̃ ≈2 r

φ̃ :=


conversion from ∧,∨ to +,×

X : random variables

Y : input variables

15

Hardness

Can we solve A−halfSAT using equivalence ?

A simple reduction
Given φ,

φ(X ,Y) ∈ A−halfSAT⇔ φ̃ ≈2 r

φ̃ :=


conversion from ∧,∨ to +,×

X : random variables

Y : input variables

↪→ EQUIV2 is coNPC=P-hard

15

Membership

M(P,Q, c , i) :=

x
$←− {0, 1}

r = (r1, . . . , rm)
$←− Fm

q

if x = 0 then
if P(i , r) = c then ACCEPT else REJECT

else
if Q(i , r) = c then ACCEPT else REJECT

Paccept(P,Q, c, i) =
[[P]]q

i
(c) + [[Q]]q

i
(c)

2

16

Membership

M(P,Q, c , i) :=

x
$←− {0, 1}

r = (r1, . . . , rm)
$←− Fm

q

if x = 0 then
if P(i , r) = c then ACCEPT else REJECT

else
if Q(i , r) = c then ACCEPT else REJECT

Paccept(P,Q, c, i) =
[[P]]q

i
(c) + [[Q]]q

i
(c)

2

16

Membership

M(P,Q, c , i) :=

x
$←− {0, 1}

r = (r1, . . . , rm)
$←− Fm

q

if x = 0 then
if P(i , r) = c then ACCEPT else REJECT

else
if Q(i , r) = c then ACCEPT else REJECT

Paccept(P,Q, c, i) =
[[P]]q

i
(c) + [[Q]]q

i
(c)

2

Deterministic evaluation

Probablity that P equals c on input i
16

Membership

M(P,Q, c , i) :=

x
$←− {0, 1}

r = (r1, . . . , rm)
$←− Fm

q

if x = 0 then
if P(i , r) = c then ACCEPT else REJECT

else
if Q(i , r) = c then ACCEPT else REJECT

Paccept(P,Q, c, i) =
[[P]]q

i
(c) + [[Q]]q

i
(c)

2

17

Membership

M(P,Q, c , i) :=

x
$←− {0, 1}

r = (r1, . . . , rm)
$←− Fm

q

if x = 0 then
if P(i , r) = c then ACCEPT else REJECT

else
if Q(i , r) = c then ACCEPT else REJECT

Paccept(P,Q, c, i) =
[[P]]q

i
(c) + [[Q]]q

i
(c)

2

17

Membership

M(P,Q, c , i) :=

x
$←− {0, 1}

r = (r1, . . . , rm)
$←− Fm

q

if x = 0 then
if P(i , r) = c then ACCEPT else REJECT

else
if Q(i , r) 6= c then ACCEPT else REJECT

Paccept(P,Q, c , i) =
[[P]]q

i
(c)+?

2

17

Membership

M(P,Q, c , i) :=

x
$←− {0, 1}

r = (r1, . . . , rm)
$←− Fm

q

if x = 0 then
if P(i , r) = c then ACCEPT else REJECT

else
if Q(i , r) 6= c then ACCEPT else REJECT

Paccept(P,Q, c , i) =
[[P]]q

i
(c) + (1− [[Q]]q

i
(c))

2

17

Membership

Paccept(P,Q, c , i) =
1
2
+

[[P]]q
i
(c)− [[Q]]q

i
(c)

2

Paccept(P,Q, c, i) =
1
2
⇔ [[P]]q

i
(c) = [[Q]]q

i
(c)

↪→ Given P,Q, c , i , deciding if [[P]]q
i
(c) = [[Q]]q

i
(c) is in C=P.

18

Membership

Paccept(P,Q, c , i) =
1
2
+

[[P]]q
i
(c)− [[Q]]q

i
(c)

2

Paccept(P,Q, c, i) =
1
2
⇔ [[P]]q

i
(c) = [[Q]]q

i
(c)

↪→ Given P,Q, c , i , deciding if [[P]]q
i
(c) = [[Q]]q

i
(c) is in C=P.

18

Membership

Paccept(P,Q, c , i) =
1
2
+

[[P]]q
i
(c)− [[Q]]q

i
(c)

2

Paccept(P,Q, c, i) =
1
2
⇔ [[P]]q

i
(c) = [[Q]]q

i
(c)

↪→ Given P,Q, c , i , deciding if [[P]]q
i
(c) = [[Q]]q

i
(c) is in C=P.

18

Membership

P ≈q Q ⇔ ∀i ∈ Fm
q ,∀c ∈ F|P|q , [[P]]q

i
(c) = [[Q]]q

i
(c)

↪→ EQUIVq is coNPC=P-complete

19

Deciding uniform equivalence

The issue of inputs

We do not need inputs !
Let P,Q ∈ Pq(I ,R), we have:

P ≈qk Q ⇔ (Pσ,RI) ≈qk (Qσ,RI)

20

The issue of inputs

We do not need inputs !
Let P,Q ∈ Pq(I ,R), we have:

P ≈qk Q ⇔ (Pσ,RI) ≈qk (Qσ,RI)

Fresh random variables

20

The issue of inputs

We do not need inputs !
Let P,Q ∈ Pq(I ,R), we have:

P ≈qk Q ⇔ (Pσ,RI) ≈qk (Qσ,RI)

Fresh random variables

σ : I → RI

20

The issue of inputs - Let’s prove it

We do not need inputs !

P ≈qk Q ⇔ (Pσ,RI) ≈qk (Qσ,RI)

P ≈qk Q

⇔ ∀i ∈ F]I
qk
. [[P]]q

k

i
= [[Q]]q

k

i

⇔ ∀i ∈ F]I
qk
.∀c ∈ Fn

qk
. [[P]]q

k

i
(c) = [[Q]]q

k

i
(c)

⇔ ∀i ∈ F]I
qk
.∀c ∈ Fn

qk
[[(Pσ,RI)]]

qk

i
(c , i) = [[(Qσ,RI)]]

qk

i
(c , i)

⇔ ∀c ′ ∈ Fn+]I
qk

[[(Pσ,RI)]]
qk (c ′) = [[(Qσ,RI)]]

qk (c ′)

⇔ (Pσ,RI) ≈qk (Qσ,RI)

21

The issue of inputs - Let’s prove it

We do not need inputs !

P ≈qk Q ⇔ (Pσ,RI) ≈qk (Qσ,RI)

P ≈qk Q

⇔ ∀i ∈ F]I
qk
. [[P]]q

k

i
= [[Q]]q

k

i

⇔ ∀i ∈ F]I
qk
.∀c ∈ Fn

qk
. [[P]]q

k

i
(c) = [[Q]]q

k

i
(c)

⇔ ∀i ∈ F]I
qk
.∀c ∈ Fn

qk
[[(Pσ,RI)]]

qk

i
(c , i) = [[(Qσ,RI)]]

qk

i
(c , i)

⇔ ∀c ′ ∈ Fn+]I
qk

[[(Pσ,RI)]]
qk (c ′) = [[(Qσ,RI)]]

qk (c ′)

⇔ (Pσ,RI) ≈qk (Qσ,RI)

21

The issue of inputs - Let’s prove it

We do not need inputs !

P ≈qk Q ⇔ (Pσ,RI) ≈qk (Qσ,RI)

P ≈qk Q

⇔ ∀i ∈ F]I
qk
. [[P]]q

k

i
= [[Q]]q

k

i

⇔ ∀i ∈ F]I
qk
.∀c ∈ Fn

qk
. [[P]]q

k

i
(c) = [[Q]]q

k

i
(c)

⇔ ∀i ∈ F]I
qk
.∀c ∈ Fn

qk
[[(Pσ,RI)]]

qk

i
(c , i) = [[(Qσ,RI)]]

qk

i
(c , i)

⇔ ∀c ′ ∈ Fn+]I
qk

[[(Pσ,RI)]]
qk (c ′) = [[(Qσ,RI)]]

qk (c ′)

⇔ (Pσ,RI) ≈qk (Qσ,RI)

21

The issue of inputs - Let’s prove it

We do not need inputs !

P ≈qk Q ⇔ (Pσ,RI) ≈qk (Qσ,RI)

P ≈qk Q

⇔ ∀i ∈ F]I
qk
. [[P]]q

k

i
= [[Q]]q

k

i

⇔ ∀i ∈ F]I
qk
.∀c ∈ Fn

qk
. [[P]]q

k

i
(c) = [[Q]]q

k

i
(c)

⇔ ∀i ∈ F]I
qk
.∀c ∈ Fn

qk
[[(Pσ,RI)]]

qk

i
(c , i) = [[(Qσ,RI)]]

qk

i
(c , i)

⇔ ∀c ′ ∈ Fn+]I
qk

[[(Pσ,RI)]]
qk (c ′) = [[(Qσ,RI)]]

qk (c ′)

⇔ (Pσ,RI) ≈qk (Qσ,RI)

21

The issue of inputs - Let’s prove it

We do not need inputs !

P ≈qk Q ⇔ (Pσ,RI) ≈qk (Qσ,RI)

P ≈qk Q

⇔ ∀i ∈ F]I
qk
. [[P]]q

k

i
= [[Q]]q

k

i

⇔ ∀i ∈ F]I
qk
.∀c ∈ Fn

qk
. [[P]]q

k

i
(c) = [[Q]]q

k

i
(c)

⇔ ∀i ∈ F]I
qk
.∀c ∈ Fn

qk
[[(Pσ,RI)]]

qk

i
(c , i) = [[(Qσ,RI)]]

qk

i
(c , i)

⇔ ∀c ′ ∈ Fn+]I
qk

[[(Pσ,RI)]]
qk (c ′) = [[(Qσ,RI)]]

qk (c ′)

⇔ (Pσ,RI) ≈qk (Qσ,RI)

21

The issue of inputs - Let’s prove it

We do not need inputs !

P ≈qk Q ⇔ (Pσ,RI) ≈qk (Qσ,RI)

P ≈qk Q

⇔ ∀i ∈ F]I
qk
. [[P]]q

k

i
= [[Q]]q

k

i

⇔ ∀i ∈ F]I
qk
.∀c ∈ Fn

qk
. [[P]]q

k

i
(c) = [[Q]]q

k

i
(c)

⇔ ∀i ∈ F]I
qk
.∀c ∈ Fn

qk
[[(Pσ,RI)]]

qk

i
(c , i) = [[(Qσ,RI)]]

qk

i
(c , i)

⇔ ∀c ′ ∈ Fn+]I
qk

[[(Pσ,RI)]]
qk (c ′) = [[(Qσ,RI)]]

qk (c ′)

⇔ (Pσ,RI) ≈qk (Qσ,RI)

21

The issue of inputs - Let’s prove it

We do not need inputs !

P ≈qk Q ⇔ (Pσ,RI) ≈qk (Qσ,RI)

P ≈qk Q

⇔ ∀i ∈ F]I
qk
. [[P]]q

k

i
= [[Q]]q

k

i

⇔ ∀i ∈ F]I
qk
.∀c ∈ Fn

qk
. [[P]]q

k

i
(c) = [[Q]]q

k

i
(c)

⇔ ∀i ∈ F]I
qk
.∀c ∈ Fn

qk
[[(Pσ,RI)]]

qk

i
(c , i) = [[(Qσ,RI)]]

qk

i
(c , i)

⇔ ∀c ′ ∈ Fn+]I
qk

[[(Pσ,RI)]]
qk (c ′) = [[(Qσ,RI)]]

qk (c ′)

⇔ (Pσ,RI) ≈qk (Qσ,RI)

21

Uniform equivalence - restricted case

Straight line programs
Programs without conditionals P,Q ∈ Pq(∅,R)

P,Q ∈ (Fq[R])
n

The mathematical question

P ≈q∞ Q

⇔
∀c ∈ Fn

qk
. ∀k.]{r ∈ F]R

qk
|P(r) = c} =]{r ∈ F]R

qk
|Q(r) = c}

22

Uniform equivalence - restricted case

Straight line programs
Programs without conditionals P,Q ∈ Pq(∅,R)

P,Q ∈ (Fq[R])
n

The mathematical question

P ≈q∞ Q

⇔
∀c ∈ Fn

qk
. ∀k.]{r ∈ F]R

qk
|P(r) = c} =]{r ∈ F]R

qk
|Q(r) = c}

22

Uniform equivalence - restricted case

Straight line programs
Programs without conditionals P,Q ∈ Pq(∅,R)

P,Q ∈ (Fq[R])
n

The mathematical question

P ≈q∞ Q

⇔
∀c ∈ Fn

qk
. ∀k.]{r ∈ F]R

qk
|P(r) = c} =]{r ∈ F]R

qk
|Q(r) = c}

22

Mathemagic !

The local zeta function
For any P ∈ Fq[R]

n,

Z (P) = exp

∑
k≥1

Nk(P)T
k

k



Why is it interesting ?

Z (P) = Z (Q)⇔ ∀k .]{r ∈ F]R
qk
|P(r) = 0} =]{r ∈ F]R

qk
|Q(r) = 0}

Black Magic
By Well’s conjecture (proven by Dwork), Z (P) is a rational
function, and can thus be computed !

23

Mathemagic !

The local zeta function
For any P ∈ Fq[R]

n,

Z (P) = exp

∑
k≥1

Nk(P)T
k

k



An indeterminate

Why is it interesting ?

Z (P) = Z (Q)⇔ ∀k .]{r ∈ F]R
qk
|P(r) = 0} =]{r ∈ F]R

qk
|Q(r) = 0}

Black Magic
By Well’s conjecture (proven by Dwork), Z (P) is a rational
function, and can thus be computed !

23

Mathemagic !

The local zeta function
For any P ∈ Fq[R]

n,

Z (P) = exp

∑
k≥1

Nk(P)T
k

k



An indeterminate

Nk(P) =]{r ∈ F]R
qk
|P(r) = 0}

Why is it interesting ?

Z (P) = Z (Q)⇔ ∀k .]{r ∈ F]R
qk
|P(r) = 0} =]{r ∈ F]R

qk
|Q(r) = 0}

Black Magic
By Well’s conjecture (proven by Dwork), Z (P) is a rational
function, and can thus be computed !

23

Mathemagic !

The local zeta function
For any P ∈ Fq[R]

n,

Z (P) = exp

∑
k≥1

Nk(P)T
k

k



Why is it interesting ?

Z (P) = Z (Q)⇔ ∀k .]{r ∈ F]R
qk
|P(r) = 0} =]{r ∈ F]R

qk
|Q(r) = 0}

Black Magic
By Well’s conjecture (proven by Dwork), Z (P) is a rational
function, and can thus be computed !

23

Mathemagic !

The local zeta function
For any P ∈ Fq[R]

n,

Z (P) = exp

∑
k≥1

Nk(P)T
k

k



Why is it interesting ?

Z (P) = Z (Q)⇔ ∀k .]{r ∈ F]R
qk
|P(r) = 0} =]{r ∈ F]R

qk
|Q(r) = 0}

Black Magic
By Well’s conjecture (proven by Dwork), Z (P) is a rational
function, and can thus be computed !

23

In a Nuttshell

Uniform equivalence for straight line programs
For P,Q straight line programs,

• using the local zeta function, we can decide if P and Q are
equal to zero with the same probability on all extensions of a
finite field;

• with a bit of encoding, we can extend this to all values, and
check the equality of the distributions.

↪→ We can decide if P ≈q∞ Q !

24

In a Nuttshell

Uniform equivalence for straight line programs
For P,Q straight line programs,

• using the local zeta function, we can decide if P and Q are
equal to zero with the same probability on all extensions of a
finite field;

• with a bit of encoding, we can extend this to all values, and
check the equality of the distributions.

↪→ We can decide if P ≈q∞ Q !

24

In a Nuttshell

Uniform equivalence for straight line programs
For P,Q straight line programs,

• using the local zeta function, we can decide if P and Q are
equal to zero with the same probability on all extensions of a
finite field;

• with a bit of encoding, we can extend this to all values, and
check the equality of the distributions.

↪→ We can decide if P ≈q∞ Q !

24

In a Nuttshell

Uniform equivalence for straight line programs
For P,Q straight line programs,

• using the local zeta function, we can decide if P and Q are
equal to zero with the same probability on all extensions of a
finite field;

• with a bit of encoding, we can extend this to all values, and
check the equality of the distributions.

↪→ We can decide if P ≈q∞ Q !

24

What about conditionals ?

A first classical encoding

if B 6= 0 then P else Q ≈qk Q + Bqk−1(P − Q)

It depends on k ...

25

What about conditionals ?

A first classical encoding

if B 6= 0 then P else Q ≈qk Q + Bqk−1(P − Q)

Bqk−1 =

0 if B = 0

1 if B 6= 0

It depends on k ...

25

What about conditionals ?

A first classical encoding

if B 6= 0 then P else Q ≈qk Q + Bqk−1(P − Q)

It depends on k ...

25

What about conditionals

The solution

• B has an inverse if and only if B 6= 0,

• ∃t,Bt − 1 = 0 if and only if B 6= 0,

• for any variable t and polynomial B :

(B(Bt − 1) = 0 ∧ t(Bt − 1) = 0)⇔ t = Bqk−2

]{r ∈ Fm
qk
, t ∈ Fqk | (Q + tB(P − Q),B(Bt − 1), t(Bt − 1)) = 0}

=]{r ∈ Fm
qk
| Q + Bqk−1(P − Q) = 0}

↪→ We can use this inside Nk

26

What about conditionals

The solution

• B has an inverse if and only if B 6= 0,

• ∃t,Bt − 1 = 0 if and only if B 6= 0,

• for any variable t and polynomial B :

(B(Bt − 1) = 0 ∧ t(Bt − 1) = 0)⇔ t = Bqk−2

]{r ∈ Fm
qk
, t ∈ Fqk | (Q + tB(P − Q),B(Bt − 1), t(Bt − 1)) = 0}

=]{r ∈ Fm
qk
| Q + Bqk−1(P − Q) = 0}

↪→ We can use this inside Nk

26

What about conditionals

The solution

• B has an inverse if and only if B 6= 0,

• ∃t,Bt − 1 = 0 if and only if B 6= 0,

• for any variable t and polynomial B :

(B(Bt − 1) = 0 ∧ t(Bt − 1) = 0)⇔ t = Bqk−2

]{r ∈ Fm
qk
, t ∈ Fqk | (Q + tB(P − Q),B(Bt − 1), t(Bt − 1)) = 0}

=]{r ∈ Fm
qk
| Q + Bqk−1(P − Q) = 0}

↪→ We can use this inside Nk

26

What about conditionals

The solution

• B has an inverse if and only if B 6= 0,

• ∃t,Bt − 1 = 0 if and only if B 6= 0,

• for any variable t and polynomial B :

(B(Bt − 1) = 0 ∧ t(Bt − 1) = 0)⇔ t = Bqk−2

]{r ∈ Fm
qk
, t ∈ Fqk | (Q + tB(P − Q),B(Bt − 1), t(Bt − 1)) = 0}

=]{r ∈ Fm
qk
| Q + Bqk−1(P − Q) = 0}

↪→ We can use this inside Nk

26

Conclusions

Uniform independence and equivalence

Decidable !

Independence and equivalence

coNPC=P-complete...

Bounding the probability of an event
coNPPP-complete in the finite case, reduces to the POSITIVITY
problem in the uniform case.

Which Programs ?

• Support of the observe primitive,

• sample variables inside a set defined by a condition over
polynomials,

• conditionals.

27

Conclusions

Uniform independence and equivalence

Decidable !

Independence and equivalence

coNPC=P-complete...

Bounding the probability of an event
coNPPP-complete in the finite case, reduces to the POSITIVITY
problem in the uniform case.

Which Programs ?

• Support of the observe primitive,

• sample variables inside a set defined by a condition over
polynomials,

• conditionals.

27

Conclusions

Uniform independence and equivalence

Decidable !

Independence and equivalence

coNPC=P-complete...

Bounding the probability of an event
coNPPP-complete in the finite case, reduces to the POSITIVITY
problem in the uniform case.

Which Programs ?

• Support of the observe primitive,

• sample variables inside a set defined by a condition over
polynomials,

• conditionals.

27

Conclusions

Uniform independence and equivalence

Decidable !

Independence and equivalence

coNPC=P-complete...

Bounding the probability of an event
coNPPP-complete in the finite case, reduces to the POSITIVITY
problem in the uniform case.

Which Programs ?

• Support of the observe primitive,

• sample variables inside a set defined by a condition over
polynomials,

• conditionals.

Given a sequence defined by a recur-
rence equations, are all the term of
the sequence positive ?

27

Conclusions

Uniform independence and equivalence

Decidable !

Independence and equivalence

coNPC=P-complete...

Bounding the probability of an event
coNPPP-complete in the finite case, reduces to the POSITIVITY
problem in the uniform case.

Which Programs ?

• Support of the observe primitive,

• sample variables inside a set defined by a condition over
polynomials,

• conditionals.

Given a sequence defined by a recur-
rence equations, are all the term of
the sequence positive ?

27

Some open questions

The big question
Is the uniform problem strictly harder than the non uniform one ?

Other open questions

• Can we support loops ?

• Is POSITIVITY decidable ?

• Can we extend to other probabilistic properties ?

28

Some open questions

The big question
Is the uniform problem strictly harder than the non uniform one ?

Other open questions

• Can we support loops ?

• Is POSITIVITY decidable ?

• Can we extend to other probabilistic properties ?

28

	This is NOT an introduction to security
	Formal definitions
	The complexity of equivalence
	Deciding uniform equivalence

