Symbolic methods applied to the automation of computational proofs

Charlie Jacomme supervised by Hubert Comon-Lundh & Steve Kremer November 20,2017

LSV, INRIA Nancy

Introduction to security

Why is computer security important ?

Why is computer security important ? Stuxnet

Why is computer security important ?

Stuxnet - Took control of Iranian nuclear power plants

Boom !

Ok, but why is the security of everyday services important ? Mails, Facebook, Twitter, ... **Ok, but why is the security of everyday services important ?** Mails, Facebook, Twitter, ...

Boom !

Ok, but why is my security important ?

• CB card

Ok, but why is my security important ?

- CB card
- Bank statements
- E-mails
- Internet search history
- . . .

Ok, but why is my security important ?

- CB card
- Bank statements
- E-mails
- Internet search history
- ...

 \hookrightarrow Should I care if a company or a government can read my mails ?

Boom !

What an attacker could learn about you:

- Do you cheat your spouse ?
- Are you homosexual ? Your son ?
- Are you in need of money ? Are you sick ?

What an attacker could learn about you:

- Do you cheat your spouse ?
- Are you homosexual ? Your son ?
- Are you in need of money ? Are you sick ?

It matters!

- Blackmail and corruption
- Commercial targeting
- Harassment and segregation
- Freedom of speech

We want security !

We want formal proofs of security !

Symbolic model

Proofs by saturation

- 1. Define exactly which operations the attacker can perform.
- 2. Define the security of our protocol/scheme.
- 3. Try all possible attacker actions, until we:
 - either break security,
 - or get a security proof.

Proofs by saturation

- 1. Define exactly which operations the attacker can perform.
- 2. Define the security of our protocol/scheme.
- 3. Try all possible attacker actions, until we:
 - either break security,
 - or get a security proof.

Realm

- Messages are abstract terms: enc(message, sk)
- Equationnal theory captures the attacker power:

dec(enc(m, sk), sk)) = m

• The attacker can intercept everything sent over the network

Deducibility Given a set of messages, can an attacker deduce a secret ?

Given a set of messages, can an attacker deduce a secret ?

$$g^{x \cdot y}, x, g^{y^2} \vdash ? g^{y^2+y}$$

Given a set of messages, can an attacker deduce a secret ?

$$g^{x \cdot y}, x, g^{y^2} \vdash^? g^{y^2 + y}$$

 $g^{x \cdot y}$

Given a set of messages, can an attacker deduce a secret ?

$$g^{x \cdot y}, \mathbf{x}, g^{y^2} \vdash^? g^{y^2 + y}$$
$$(g^{x \cdot y})^{\frac{1}{x}}$$

Given a set of messages, can an attacker deduce a secret ?

$$g^{x \cdot y}, x, g^{y^2} \vdash^? g^{y^2 + y}$$
$$(g^{x \cdot y})^{\frac{1}{x}} g^{y^2}$$

Given a set of messages, can an attacker deduce a secret ?

$$g^{x \cdot y}, x, g^{y^2} \vdash^? g^{y^2 + y}$$
$$(g^{x \cdot y})^{\frac{1}{x}} g^{y^2} = g^{y^2 + y}$$

Computational model

- 1. Assume that some problem is computationally difficult
- 2. Define the security of our protocol/scheme
- 3. Show that if one can break the security, one can break the difficult problem

- 1. Assume that some problem is computationally difficult
- 2. Define the security of our protocol/scheme
- 3. Show that if one can break the security, one can break the difficult problem

Realm

- Messages are bitstrings
- Attackers are any PPT algorithm/TM

Computational vs Symbolic

Symbolic model

- Network controlled by the attacker
- Primitives are idealized

Computational model

- Network controlled by the attacker
- Arbitrary PPT attacker

Fight !

Symbolic model

- Network controlled by the attacker
- Primitives are idealized
- ✓ Many automated proofs
- × No proofs by hand
- × Missed attacks

Computational model

- Network controlled by the attacker
- Arbitrary PPT attacker
- \times Few automated proofs
- × Hand made proofs hard to check
- \checkmark Stronger proofs

 \hookrightarrow Our focus : use technics from symbolic models to improve automation in the computational model

A formal framework for computational proofs

Goal example:

$$\forall \mathcal{A}. a, b : \mathbb{F}_q.\mathcal{A}(g^a, g^b, g^{ab}) \simeq a, b, c : \mathbb{F}_q.\mathcal{A}(g^a, g^b, g^c)$$

 \hookrightarrow The attacker cannot distinguish between the two inputs

$$\forall \mathcal{A}. \ (\mathsf{a}, \mathsf{b}: \mathbb{F}_q.\mathcal{A}(g^{\mathsf{a}}, g^{\mathsf{b}}, g^{\mathsf{ab}})) \simeq (\mathsf{a}, \mathsf{b}, \mathsf{c}: \mathbb{F}_q.\mathcal{A}(g^{\mathsf{a}}, g^{\mathsf{b}}, g^{\mathsf{c}}))$$

$$\forall \mathcal{A}. \ (\mathsf{a}, \mathsf{b}: \mathbb{F}_q.\mathcal{A}(g^{\mathsf{a}}, g^{\mathsf{b}}, g^{\mathsf{ab}})) \simeq (\mathsf{a}, \mathsf{b}, \mathsf{c}: \mathbb{F}_q.\mathcal{A}(g^{\mathsf{a}}, g^{\mathsf{b}}, g^{\mathsf{c}}))$$

The simulator We can replace any \mathcal{A} by:

$$B(\mathcal{A})(e_1, e_2, e_3) := d : \mathbb{F}_q, \mathcal{A}(e_1, e_2, g^d, e_3^d)$$

$$\forall \mathcal{A}. \ (\mathsf{a}, \mathsf{b}: \mathbb{F}_q.\mathcal{A}(g^{\mathsf{a}}, g^{\mathsf{b}}, g^{\mathsf{ab}})) \simeq (\mathsf{a}, \mathsf{b}, \mathsf{c}: \mathbb{F}_q.\mathcal{A}(g^{\mathsf{a}}, g^{\mathsf{b}}, g^{\mathsf{c}}))$$

The simulator We can replace any \mathcal{A} by:

$$B(\mathcal{A})(e_1, e_2, e_3) := d : \mathbb{F}_q, \mathcal{A}(e_1, e_2, g^d, e_3^d)$$

The result

 $\forall \mathcal{A}. \ (a, b, d: \mathbb{F}_q. \mathcal{A}(g^a, g^b, g^d, g^{abd})) \simeq (a, b, c, d: \mathbb{F}_q. \mathcal{A}(g^a, g^b, g^d, g^{cd}))$

 $\forall \mathcal{A}. \ (a,b:\mathbb{F}_q.\mathcal{A}(g^a,g^b,g^{ab})) \simeq (a,b,c:\mathbb{F}_q.\mathcal{A}(g^a,g^b,g^c))$

The simulator We can replace any \mathcal{A} by:

$$B(\mathcal{A})(e_1,e_2,e_3):=d:\mathbb{F}_q,\mathcal{A}(e_1,e_2,g^d,e_3^d)$$

The result

 $\forall \mathcal{A}. \ (a, b, d: \mathbb{F}_q. \mathcal{A}(g^a, g^b, g^d, g^{abd})) \simeq (a, b, c, d: \mathbb{F}_q. \mathcal{A}(g^a, g^b, g^d, g^{cd}))$

 \hookrightarrow We want to do this in reverse, i.e build the B

Automated construction of simulators

Question Given an assumption and a goal, can we automatically find B?

Assumption: $\forall \mathcal{A}. (a, b : \mathbb{F}_q.\mathcal{A}(g^a, g^b, g^{ab})) \simeq (a, b, c : \mathbb{F}_q.\mathcal{A}(g^a, g^b, g^c))$ Goal: $a, b, c : \mathbb{F}_q.\mathcal{A}(g^a, g^b, g^c, g^{abc}) \simeq a, b, c, d : \mathbb{F}_q.\mathcal{A}(g^a, g^b, g^c, g^{dc})$

Assumption: $\forall \mathcal{A}. (a, b : \mathbb{F}_q.\mathcal{A}(g^a, g^b, g^{ab})) \simeq (a, b, c : \mathbb{F}_q.\mathcal{A}(g^a, g^b, g^c))$ Goal: $a, b, c : \mathbb{F}_q.\mathcal{A}(g^a, g^b, g^c, g^{abc}) \simeq a, b, c, d : \mathbb{F}_q.\mathcal{A}(g^a, g^b, g^c, g^{dc})$ Potential simulator B

Assumption:
$$\forall \mathcal{A}. (a, b : \mathbb{F}_q.\mathcal{A}(g^a, g^b, g^{ab})) \simeq (a, b, c : \mathbb{F}_q.\mathcal{A}(g^a, g^b, g^c))$$

Goal: $a, b, c : \mathbb{F}_q.\mathcal{A}(g^a, g^b, g^c, g^{abc}) \simeq a, b, c, d : \mathbb{F}_q.\mathcal{A}(g^a, g^b, g^c, g^{dc})$
Potential simulator B

The question Given (g^a, g^b, g^{ab}) , is it possible to compute (g^a, g^b, g^c, g^{abc}) ?

Assumption: $\forall \mathcal{A}. (a, b : \mathbb{F}_q.\mathcal{A}(g^a, g^b, g^{ab})) \simeq (a, b, c : \mathbb{F}_q.\mathcal{A}(g^a, g^b, g^c))$

Goal: $a, b, c : \mathbb{F}_q.\mathcal{A}(g^a, g^b, g^c, g^{abc}) \simeq a, b, c, d : \mathbb{F}_q.\mathcal{A}(g^a, g^b, g^c, g^{dc})$ Potential simulator B

The question Given (g^a, g^b, g^{ab}) , is it possible to compute (g^a, g^b, g^c, g^{abc}) ?

$\hookrightarrow\!\mathsf{A} \text{ deducibility problem}$

Left hand side of an assumption :

$$x_1,...,x_n: \mathbb{F}_q.\mathcal{A}(e_1,..,e_k)$$

Left hand side of a goal:

$$x_1, ..., x_n, x_{n+1}..., x_{n+k} : \mathbb{F}_q.\mathcal{A}(t_1, ..., t_l)$$

Check, if for all terms t_i , $1 \le i \le l$:

 $e_1, \ldots, e_k \vdash t_i$

Disadvantage

Something not deducible in the symbolic word might be deducible in the computational world.

$$enc(a, sk), enc(b, sk) \not\vdash enc(a + b, sk)$$

Advantage

If something is deducible in the symbolic world, it is always deducible.

 \hookrightarrow We may find valid simulators using deducibility.

Option 1 Use existing results in the symbolic model for simple theories.

Option 1

Use existing results in the symbolic model for simple theories. \hookrightarrow provides fast automation.

- In case of success, we can construct a simulator
- If it fails, we don't know

Option 1

Use existing results in the symbolic model for simple theories. \hookrightarrow provides fast automation.

- In case of success, we can construct a simulator
- If it fails, we don't know

Option 2 Extend the symbolic technics to more faithful theories.

Option 1

Use existing results in the symbolic model for simple theories. \hookrightarrow provides fast automation.

- In case of success, we can construct a simulator
- If it fails, we don't know

Option 2 Extend the symbolic technics to more faithful theories. → provides slower but complete automation.

Contributions

Existing work

- Deducibility only for polynomials of degree one in the exponent, without axioms (e,g a ≠ 0)
- AutoGnP [Barthe et al, CCS15] used heuristics to construct simulators

Contributions

Existing work

- Deducibility only for polynomials of degree one in the exponent, without axioms (e,g a ≠ 0)
- AutoGnP [Barthe et al, CCS15] used heuristics to construct simulators

Contributions

- Axioms ($a \neq 0$)
- Bilinear maps
- Any polynomials in the exponent
- Matrices

Symbolic Proofs for Lattice-Based Cryptography, CCS18

G. Barthe, X. Fan, J. Gancher, B. Gregoire, C. Jacomme, E. Shi

Conclusions

A complete procedure

Given an assumption and a goal, we provide a complete procedure to decide if the assumption can be applied.

A complete procedure

Given an assumption and a goal, we provide a complete procedure to decide if the assumption can be applied.

WIP

Use symbolic methods (deducibility, static equivalence, unification):

- to automatize more complex crypto proofs (RND rule)
- to verify masking schemes
- to handle multistage games, oracle games, ...

A complete procedure

Given an assumption and a goal, we provide a complete procedure to decide if the assumption can be applied.

WIP

Use symbolic methods (deducibility, static equivalence, unification):

- to automatize more complex crypto proofs (RND rule)
- to verify masking schemes
- to handle multistage games, oracle games, ...

Multiple projects in parallel

Multiple projects in parallel

Try to get the best of both worlds:

• Use symbolic methods to enhance automation in the computational world.

G. Barthe, B. Gregoire, S. Kremer, P-Y.Strub

- Composing proofs of security in the computational world¹.
 <u>H. Comon-Lundh</u>, G. Scerri
- Case studies² in the symbolic world, as exhaustive as possible. <u>S. Kremer</u>

¹prove the security of big protocols by only proving its components.

²multi-factor authentication protocols, SSH