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Introduction to security



Security ?

Why is computer security important ?

Stuxnet - Took control of Iranian nuclear power plants
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Security ?

Ok, but why is my security important ?

• CB card

• Bank statements

• E-mails

• Internet search history

• . . .

↪→ Should I care if a company or a government can read my mails ?
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Security ?

What an attacker could learn about you:

• Do you cheat your spouse ?

• Are you homosexual ? Your son ?

• Are you in need of money ? Are you sick ?

It matters!

• Blackmail and corruption

• Commercial targeting

• Harassment and segregation

• Freedom of speech
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Conclusion of the Introduction

We want security !
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Conclusion of the Introduction

We want formal proofs of security !
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Symbolic model



Proofs by saturation

1. Define exactly which operations the attacker can perform.

2. Define the security of our protocol/scheme.
3. Try all possible attacker actions, until we:

• either break security,
• or get a security proof.

Realm

• Messages are abstract terms: enc(message, sk)

• Equationnal theory captures the attacker power:

dec(enc(m, sk), sk)) = m

• The attacker can intercept everything sent over the network
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A symbolic method example

Deducibility
Given a set of messages, can an attacker deduce a secret ?

Example

10



A symbolic method example

Deducibility
Given a set of messages, can an attacker deduce a secret ?

Example

g x ·y , x , g y2 `? g y2+y

10



A symbolic method example

Deducibility
Given a set of messages, can an attacker deduce a secret ?

Example

g x ·y , x , g y2 `? g y2+y

g x ·y

10



A symbolic method example

Deducibility
Given a set of messages, can an attacker deduce a secret ?

Example

g x ·y , x , g y2 `? g y2+y

(g x ·y )
1
x

10



A symbolic method example

Deducibility
Given a set of messages, can an attacker deduce a secret ?

Example

g x ·y , x , g y2 `? g y2+y

(g x ·y )
1
x g y2

10



A symbolic method example

Deducibility
Given a set of messages, can an attacker deduce a secret ?

Example

g x ·y , x , g y2 `? g y2+y

(g x ·y )
1
x g y2

= g y2+y
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Computational model



Proof by reductions

1. Assume that some problem is computationally difficult

2. Define the security of our protocol/scheme

3. Show that if one can break the security, one can break the
difficult problem

Realm

• Messages are bitstrings

• Attackers are any PPT algorithm/TM
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Computational vs Symbolic



Fight !

Symbolic model

• Network controlled by the
attacker

• Primitives are idealized

Computational model

• Network controlled by the
attacker

• Arbitrary PPT attacker

↪→ Our focus : use technics from symbolic models to improve
automation in the computational model
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Fight !

Symbolic model

• Network controlled by the
attacker

• Primitives are idealized

X Many automated proofs

× No proofs by hand

× Missed attacks

Computational model

• Network controlled by the
attacker

• Arbitrary PPT attacker

× Few automated proofs

× Hand made proofs hard to
check

X Stronger proofs

↪→ Our focus : use technics from symbolic models to improve
automation in the computational model
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A formal framework for
computational proofs



Game equivalence

Goal example:

∀A. a, b : Fq.A(ga, gb, gab) 'a, b, c : Fq.A(ga, gb, g c)
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Game equivalence

Goal example:

∀A. a, b : Fq.A(ga, gb, gab) 'a, b, c : Fq.A(ga, gb, g c)

Arbitraty PPT
TM

Randomly sampled
over Fq

Equality of distri-
bution

↪→ The attacker cannot distinguish between the two inputs
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Reduction example

The DDH assumption

∀A. (a, b : Fq.A(ga, gb, gab)) ' (a, b, c : Fq.A(ga, gb, g c))

The simulator
We can replace any A by:

B(A)(e1, e2, e3) := d : Fq,A(e1, e2, gd , ed3 )

The result

∀A. (a, b, d : Fq.A(ga, gb, gd , gabd)) ' (a, b, c , d : Fq.A(ga, gb, gd , g cd))
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Reduction example

The DDH assumption

∀A. (a, b : Fq.A(ga, gb, gab)) ' (a, b, c : Fq.A(ga, gb, g c))

The simulator
We can replace any A by:

B(A)(e1, e2, e3) := d : Fq,A(e1, e2, gd , ed3 )

The result

∀A. (a, b, d : Fq.A(ga, gb, gd , gabd)) ' (a, b, c , d : Fq.A(ga, gb, gd , g cd))

↪→ We want to do this in reverse, i.e build the B
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Automated construction of
simulators



The problem

Question
Given an assumption and a goal, can we automatically find B?
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Example

Simulator validity

Assumption: ∀A. (a, b : Fq.A(ga, gb, gab)) ' (a, b, c : Fq.A(ga, gb, g c))

Goal: a, b, c : Fq.A(ga, gb, g c , gabc) ' a, b, c , d : Fq.A(ga, gb, g c , gdc)
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Example

Simulator validity

Assumption: ∀A. (a, b : Fq.A(ga, gb, gab)) ' (a, b, c : Fq.A(ga, gb, g c))

Goal: a, b, c : Fq.A(ga, gb, g c , gabc) ' a, b, c , d : Fq.A(ga, gb, g c , gdc)

Potential simulator B

The question
Given (ga, gb, gab), is it possible to compute (ga, gb, g c , gabc) ?

↪→A deducibility problem
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Main idea

Left hand side of an assumption :

x1, ..., xn : Fq.A(e1, .., ek)

Left hand side of a goal:

x1, ..., xn, xn+1..., xn+k : Fq.A(t1, . . . , tl)

Check, if for all terms ti , 1 ≤ i ≤ l :

e1, ..., ek ` ti

17



Correctness of using deducibility

Disadvantage
Something not deducible in the symbolic word might be deducible
in the computational world.

enc(a, sk), enc(b, sk) 6` enc(a+ b, sk)

Advantage
If something is deducible in the symbolic world, it is always
deducible.

↪→ We may find valid simulators using deducibility.
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Using deducibility in practice

Option 1
Use existing results in the symbolic model for simple theories.

↪→ provides fast automation.

• In case of success, we can construct a simulator

• If it fails, we don’t know

Option 2
Extend the symbolic technics to more faithful theories.
↪→ provides slower but complete automation.

19
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Contributions

Existing work

• Deducibility only for
polynomials of degree one in
the exponent, without
axioms (e,g a 6= 0)

• AutoGnP [Barthe et al,
CCS15] used heuristics to
construct simulators

Contributions

• Axioms ( a 6= 0)

• Bilinear maps

• Any polynomials in the
exponent

• Matrices

Symbolic Proofs for Lattice-Based Cryptography, CCS18
G. Barthe, X. Fan, J. Gancher, B. Gregoire, C. Jacomme, E. Shi
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Conclusions



Conclusion regarding the presented work

A complete procedure
Given an assumption and a goal, we provide a complete procedure
to decide if the assumption can be applied.

WIP
Use symbolic methods (deducibility, static equivalence, unification):

• to automatize more complex crypto proofs (RND rule)

• to verify masking schemes

• to handle multistage games, oracle games, ...
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Conclusion regarding my PhD

Multiple projects in parallel
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Conclusion regarding my PhD

Multiple projects in parallel

Try to get the best of both worlds:

• Use symbolic methods to enhance automation in the
computational world.

G. Barthe, B. Gregoire, S. Kremer, P-Y.Strub

• Composing proofs of security in the computational world1.
H. Comon-Lundh, G. Scerri

• Case studies2 in the symbolic world, as exhaustive as possible.
S. Kremer

1prove the security of big protocols by only proving its components.

2multi-factor authentication protocols, SSH
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