
Symbolic methods applied to the
automation of computational proofs

Charlie Jacomme supervised by Hubert Comon-Lundh & Steve Kremer

November 20,2017

LSV, INRIA Nancy

Introduction to security

Security ?

Why is computer security important ?

Stuxnet - Took control of Iranian nuclear power plants

1

Security ?

Why is computer security important ?
Stuxnet

- Took control of Iranian nuclear power plants

1

Security ?

Why is computer security important ?
Stuxnet - Took control of Iranian nuclear power plants

1

Security ?

Boom !

2

Security ?

Ok, but why is the security of everyday services important ?
Mails, Facebook, Twitter, ...

3

Security ?

Ok, but why is the security of everyday services important ?
Mails, Facebook, Twitter, ...

3

Security ?

Boom !

4

Security ?

Ok, but why is my security important ?

• CB card

• Bank statements

• E-mails

• Internet search history

• . . .

↪→ Should I care if a company or a government can read my mails ?

5

Security ?

Ok, but why is my security important ?

• CB card

• Bank statements

• E-mails

• Internet search history

• . . .

↪→ Should I care if a company or a government can read my mails ?

5

Security ?

Ok, but why is my security important ?

• CB card

• Bank statements

• E-mails

• Internet search history

• . . .

↪→ Should I care if a company or a government can read my mails ?

5

Security ?

Boom !

6

Security ?

What an attacker could learn about you:

• Do you cheat your spouse ?

• Are you homosexual ? Your son ?

• Are you in need of money ? Are you sick ?

It matters!

• Blackmail and corruption

• Commercial targeting

• Harassment and segregation

• Freedom of speech

7

Security ?

What an attacker could learn about you:

• Do you cheat your spouse ?

• Are you homosexual ? Your son ?

• Are you in need of money ? Are you sick ?

It matters!

• Blackmail and corruption

• Commercial targeting

• Harassment and segregation

• Freedom of speech

7

Conclusion of the Introduction

We want security !

8

Conclusion of the Introduction

We want formal proofs of security !

8

Symbolic model

Proofs by saturation

1. Define exactly which operations the attacker can perform.

2. Define the security of our protocol/scheme.
3. Try all possible attacker actions, until we:

• either break security,
• or get a security proof.

Realm

• Messages are abstract terms: enc(message, sk)

• Equationnal theory captures the attacker power:

dec(enc(m, sk), sk)) = m

• The attacker can intercept everything sent over the network

9

Proofs by saturation

1. Define exactly which operations the attacker can perform.

2. Define the security of our protocol/scheme.
3. Try all possible attacker actions, until we:

• either break security,
• or get a security proof.

Realm

• Messages are abstract terms: enc(message, sk)

• Equationnal theory captures the attacker power:

dec(enc(m, sk), sk)) = m

• The attacker can intercept everything sent over the network

9

A symbolic method example

Deducibility
Given a set of messages, can an attacker deduce a secret ?

Example

10

A symbolic method example

Deducibility
Given a set of messages, can an attacker deduce a secret ?

Example

g x ·y , x , g y2 `? g y2+y

10

A symbolic method example

Deducibility
Given a set of messages, can an attacker deduce a secret ?

Example

g x ·y , x , g y2 `? g y2+y

g x ·y

10

A symbolic method example

Deducibility
Given a set of messages, can an attacker deduce a secret ?

Example

g x ·y , x , g y2 `? g y2+y

(g x ·y)
1
x

10

A symbolic method example

Deducibility
Given a set of messages, can an attacker deduce a secret ?

Example

g x ·y , x , g y2 `? g y2+y

(g x ·y)
1
x g y2

10

A symbolic method example

Deducibility
Given a set of messages, can an attacker deduce a secret ?

Example

g x ·y , x , g y2 `? g y2+y

(g x ·y)
1
x g y2

= g y2+y

10

Computational model

Proof by reductions

1. Assume that some problem is computationally difficult

2. Define the security of our protocol/scheme

3. Show that if one can break the security, one can break the
difficult problem

Realm

• Messages are bitstrings

• Attackers are any PPT algorithm/TM

11

Proof by reductions

1. Assume that some problem is computationally difficult

2. Define the security of our protocol/scheme

3. Show that if one can break the security, one can break the
difficult problem

Realm

• Messages are bitstrings

• Attackers are any PPT algorithm/TM

11

Computational vs Symbolic

Fight !

Symbolic model

• Network controlled by the
attacker

• Primitives are idealized

Computational model

• Network controlled by the
attacker

• Arbitrary PPT attacker

↪→ Our focus : use technics from symbolic models to improve
automation in the computational model

12

Fight !

Symbolic model

• Network controlled by the
attacker

• Primitives are idealized

X Many automated proofs

× No proofs by hand

× Missed attacks

Computational model

• Network controlled by the
attacker

• Arbitrary PPT attacker

× Few automated proofs

× Hand made proofs hard to
check

X Stronger proofs

↪→ Our focus : use technics from symbolic models to improve
automation in the computational model

12

A formal framework for
computational proofs

Game equivalence

Goal example:

∀A. a, b : Fq.A(ga, gb, gab) 'a, b, c : Fq.A(ga, gb, g c)

13

Game equivalence

Goal example:

∀A. a, b : Fq.A(ga, gb, gab) 'a, b, c : Fq.A(ga, gb, g c)

Arbitraty PPT
TM

13

Game equivalence

Goal example:

∀A. a, b : Fq.A(ga, gb, gab) 'a, b, c : Fq.A(ga, gb, g c)

Arbitraty PPT
TM

Randomly sampled
over Fq

13

Game equivalence

Goal example:

∀A. a, b : Fq.A(ga, gb, gab) 'a, b, c : Fq.A(ga, gb, g c)

Arbitraty PPT
TM

Randomly sampled
over Fq

Equality of distri-
bution

13

Game equivalence

Goal example:

∀A. a, b : Fq.A(ga, gb, gab) 'a, b, c : Fq.A(ga, gb, g c)

Arbitraty PPT
TM

Randomly sampled
over Fq

Equality of distri-
bution

↪→ The attacker cannot distinguish between the two inputs
13

Reduction example

The DDH assumption

∀A. (a, b : Fq.A(ga, gb, gab)) ' (a, b, c : Fq.A(ga, gb, g c))

The simulator
We can replace any A by:

B(A)(e1, e2, e3) := d : Fq,A(e1, e2, gd , ed3)

The result

∀A. (a, b, d : Fq.A(ga, gb, gd , gabd)) ' (a, b, c , d : Fq.A(ga, gb, gd , g cd))

14

Reduction example

The DDH assumption

∀A. (a, b : Fq.A(ga, gb, gab)) ' (a, b, c : Fq.A(ga, gb, g c))

The simulator
We can replace any A by:

B(A)(e1, e2, e3) := d : Fq,A(e1, e2, gd , ed3)

The result

∀A. (a, b, d : Fq.A(ga, gb, gd , gabd)) ' (a, b, c , d : Fq.A(ga, gb, gd , g cd))

14

Reduction example

The DDH assumption

∀A. (a, b : Fq.A(ga, gb, gab)) ' (a, b, c : Fq.A(ga, gb, g c))

The simulator
We can replace any A by:

B(A)(e1, e2, e3) := d : Fq,A(e1, e2, gd , ed3)

The result

∀A. (a, b, d : Fq.A(ga, gb, gd , gabd)) ' (a, b, c , d : Fq.A(ga, gb, gd , g cd))

14

Reduction example

The DDH assumption

∀A. (a, b : Fq.A(ga, gb, gab)) ' (a, b, c : Fq.A(ga, gb, g c))

The simulator
We can replace any A by:

B(A)(e1, e2, e3) := d : Fq,A(e1, e2, gd , ed3)

The result

∀A. (a, b, d : Fq.A(ga, gb, gd , gabd)) ' (a, b, c , d : Fq.A(ga, gb, gd , g cd))

↪→ We want to do this in reverse, i.e build the B
14

Automated construction of
simulators

The problem

Question
Given an assumption and a goal, can we automatically find B?

15

Example

Simulator validity

Assumption: ∀A. (a, b : Fq.A(ga, gb, gab)) ' (a, b, c : Fq.A(ga, gb, g c))

Goal: a, b, c : Fq.A(ga, gb, g c , gabc) ' a, b, c , d : Fq.A(ga, gb, g c , gdc)

16

Example

Simulator validity

Assumption: ∀A. (a, b : Fq.A(ga, gb, gab)) ' (a, b, c : Fq.A(ga, gb, g c))

Goal: a, b, c : Fq.A(ga, gb, g c , gabc) ' a, b, c , d : Fq.A(ga, gb, g c , gdc)

Potential simulator B

16

Example

Simulator validity

Assumption: ∀A. (a, b : Fq.A(ga, gb, gab)) ' (a, b, c : Fq.A(ga, gb, g c))

Goal: a, b, c : Fq.A(ga, gb, g c , gabc) ' a, b, c , d : Fq.A(ga, gb, g c , gdc)

Potential simulator B

The question
Given (ga, gb, gab), is it possible to compute (ga, gb, g c , gabc) ?

16

Example

Simulator validity

Assumption: ∀A. (a, b : Fq.A(ga, gb, gab)) ' (a, b, c : Fq.A(ga, gb, g c))

Goal: a, b, c : Fq.A(ga, gb, g c , gabc) ' a, b, c , d : Fq.A(ga, gb, g c , gdc)

Potential simulator B

The question
Given (ga, gb, gab), is it possible to compute (ga, gb, g c , gabc) ?

↪→A deducibility problem

16

Main idea

Left hand side of an assumption :

x1, ..., xn : Fq.A(e1, .., ek)

Left hand side of a goal:

x1, ..., xn, xn+1..., xn+k : Fq.A(t1, . . . , tl)

Check, if for all terms ti , 1 ≤ i ≤ l :

e1, ..., ek ` ti

17

Correctness of using deducibility

Disadvantage
Something not deducible in the symbolic word might be deducible
in the computational world.

enc(a, sk), enc(b, sk) 6` enc(a+ b, sk)

Advantage
If something is deducible in the symbolic world, it is always
deducible.

↪→ We may find valid simulators using deducibility.

18

Using deducibility in practice

Option 1
Use existing results in the symbolic model for simple theories.

↪→ provides fast automation.

• In case of success, we can construct a simulator

• If it fails, we don’t know

Option 2
Extend the symbolic technics to more faithful theories.
↪→ provides slower but complete automation.

19

Using deducibility in practice

Option 1
Use existing results in the symbolic model for simple theories.
↪→ provides fast automation.

• In case of success, we can construct a simulator

• If it fails, we don’t know

Option 2
Extend the symbolic technics to more faithful theories.
↪→ provides slower but complete automation.

19

Using deducibility in practice

Option 1
Use existing results in the symbolic model for simple theories.
↪→ provides fast automation.

• In case of success, we can construct a simulator

• If it fails, we don’t know

Option 2
Extend the symbolic technics to more faithful theories.

↪→ provides slower but complete automation.

19

Using deducibility in practice

Option 1
Use existing results in the symbolic model for simple theories.
↪→ provides fast automation.

• In case of success, we can construct a simulator

• If it fails, we don’t know

Option 2
Extend the symbolic technics to more faithful theories.
↪→ provides slower but complete automation.

19

Contributions

Existing work

• Deducibility only for
polynomials of degree one in
the exponent, without
axioms (e,g a 6= 0)

• AutoGnP [Barthe et al,
CCS15] used heuristics to
construct simulators

Contributions

• Axioms (a 6= 0)

• Bilinear maps

• Any polynomials in the
exponent

• Matrices

Symbolic Proofs for Lattice-Based Cryptography, CCS18
G. Barthe, X. Fan, J. Gancher, B. Gregoire, C. Jacomme, E. Shi

20

Contributions

Existing work

• Deducibility only for
polynomials of degree one in
the exponent, without
axioms (e,g a 6= 0)

• AutoGnP [Barthe et al,
CCS15] used heuristics to
construct simulators

Contributions

• Axioms (a 6= 0)

• Bilinear maps

• Any polynomials in the
exponent

• Matrices

Symbolic Proofs for Lattice-Based Cryptography, CCS18
G. Barthe, X. Fan, J. Gancher, B. Gregoire, C. Jacomme, E. Shi

20

Conclusions

Conclusion regarding the presented work

A complete procedure
Given an assumption and a goal, we provide a complete procedure
to decide if the assumption can be applied.

WIP
Use symbolic methods (deducibility, static equivalence, unification):

• to automatize more complex crypto proofs (RND rule)

• to verify masking schemes

• to handle multistage games, oracle games, ...

21

Conclusion regarding the presented work

A complete procedure
Given an assumption and a goal, we provide a complete procedure
to decide if the assumption can be applied.

WIP
Use symbolic methods (deducibility, static equivalence, unification):

• to automatize more complex crypto proofs (RND rule)

• to verify masking schemes

• to handle multistage games, oracle games, ...

21

Conclusion regarding the presented work

A complete procedure
Given an assumption and a goal, we provide a complete procedure
to decide if the assumption can be applied.

WIP
Use symbolic methods (deducibility, static equivalence, unification):

• to automatize more complex crypto proofs (RND rule)

• to verify masking schemes

• to handle multistage games, oracle games, ...

21

Conclusion regarding my PhD

Multiple projects in parallel

22

Conclusion regarding my PhD

Multiple projects in parallel

Try to get the best of both worlds:

• Use symbolic methods to enhance automation in the
computational world.

G. Barthe, B. Gregoire, S. Kremer, P-Y.Strub

• Composing proofs of security in the computational world1.
H. Comon-Lundh, G. Scerri

• Case studies2 in the symbolic world, as exhaustive as possible.
S. Kremer

1prove the security of big protocols by only proving its components.

2multi-factor authentication protocols, SSH

22

	Introduction to security
	Symbolic model
	Computational model
	 Computational vs Symbolic
	A formal framework for computational proofs
	Automated construction of simulators
	Conclusions

