Gröbner Basis and deducibility

Charlie Jacomme

July 13, 2018

LSV & LORIA^a

^aCNRS, INRIA, ENS Paris-Saclay

Introduction to security

A rising need for security

Confidentiality: $\begin{cases} & \text{Banking operations} \\ & \text{Smartphones with GPS} \\ & \dots \end{cases}$

A rising need for security

A public encryption scheme:

A public encryption scheme:

- A public key *pk*
- A secret key sk

A public encryption scheme:

- A public key *pk*
- A secret key sk
- An encryption function enc(message, pk)
- A decryption function dec(cypher, sk)

A public encryption scheme:

- A public key *pk*
- A secret key sk
- An encryption function enc(message, pk)
- A decryption function dec(cypher, sk)

based on exponentiation in group and hardness of discrete logarithm

Protocols

Protocols

Is secret secret?

Protocols

No!

Formal methods

Proofs of security are

- difficult
- error prone

Formal methods

Proofs of security are

- difficult
- error prone

 \hookrightarrow We want automation

Deducibility

Given a set of messages, can an attacker deduce a secret ?

Deducibility

Given a set of messages, can an attacker deduce a secret ?

Messages are

- x, y, z, ... random variables over \mathbb{K}
- g^f with $f \in \mathbb{K}[X]$

Deducibility

Given a set of messages, can an attacker deduce a secret ?

Messages are

- x, y, z, ... random variables over \mathbb{K}
- g^f with $f \in \mathbb{K}[X]$

Example

$$x, g^{x \times y}, g^{y^2} \vdash g^{y^2+y}$$

6

Deducibility

Given a set of messages, can an attacker deduce a secret ?

Messages are

- x, y, z, ... random variables over \mathbb{K}
- g^f with $f \in \mathbb{K}[X]$

Example

$$x, g^{x \times y}, g^{y^2} \vdash g^{y^2+y}$$

$$g^{y^2+y} = (g^{x \times y})^{x^{-1}} \times g^{y^2}$$

6

Our generalized problem

$$\Gamma \models X, g^{f_1}, ..., g^{f_k} \vdash g^h$$

```
\Gamma \models X, g^{f_1}, ..., g^{f_k} \vdash g^h
\begin{cases}
\Gamma \text{ axioms} \\
X \text{ public variables} \\
Y \text{ secret variables} \\
g \text{ group} \\
f_i, h \text{ polynomials over } \mathbb{K}[X, Y]
\end{cases}
```

$$\Gamma \models X, g^{f_1}, ..., g^{f_k} \vdash g_t^h$$

With Gröbner Basis

$$\Gamma \models X, g^{f_1}, ..., g^{f_k} \vdash g_t^h$$

With Gröbner Basis

1. Characterize the attacker knowledge:

$$M = \{ \sum_{i} e_i \times f_i | e_i \in \mathbb{K}[X] \}$$

$$\Gamma \models X, g^{f_1}, ..., g^{f_k} \vdash g_t^h$$

With Gröbner Basis

1. Characterize the attacker knowledge:

$$M = \{ \sum_{i} e_{i} \times f_{i} | e_{i} \in \mathbb{K}[X] \}$$

2. Saturate using the axioms, if $\Gamma = \{p_k \neq 0\}$:

$$M:_{\mathbb{K}[X,Y]}(p_1...p_n)^{\infty}=\{f\in\mathbb{K}[X,Y]|\exists n\in\mathbb{N},f\times(p_1...p_n)^n\in M\}$$

8

$$\Gamma \models X, g^{f_1}, ..., g^{f_k} \vdash g_t^h$$

With Gröbner Basis

1. Characterize the attacker knowledge:

$$M = \{ \sum_{i} e_i \times f_i | e_i \in \mathbb{K}[X] \}$$

2. Saturate using the axioms, if $\Gamma = \{p_k \neq 0\}$:

$$M:_{\mathbb{K}[X,Y]}(p_1...p_n)^{\infty}=\{f\in\mathbb{K}[X,Y]|\exists n\in\mathbb{N},f\times(p_1...p_n)^n\in M\}$$

3. Test the membership.

8

Gröbner Basis

(in)Formal definition

For f, g_i in $\mathbb{K}[X, Y]$, we have:

- an ordering on monomials
- if $Im(f) = qIm(g_1)$ then $red_1^X(f, g_1) = f qg$
- $red^X(f,g_i)$ is the iteration of red_1 for all g_i

(in)Formal definition

For f, g_i in $\mathbb{K}[X, Y]$, we have:

- an ordering on monomials
- if $Im(f) = qIm(g_1)$ then $red_1^X(f, g_1) = f qg$
- $red^X(f,g_i)$ is the iteration of red_1 for all g_i

Gröbner Basis

$$G = \{g_i\}$$
 is a GB pf M iff $\forall h \in M, red(h, G) = 0$

9

Buchberger's algorithm

For f, g_i in $\mathbb{K}[X, Y]$, we have:

$$S(f,g_1) = \frac{lppcm(f,g_1)}{lm(g)}f - \frac{lppcm(f,g_1)}{lm(f)}g$$

Buchberger's algorithm

For f, g_i in $\mathbb{K}[X, Y]$, we have:

$$S(f,g_1) = \frac{Ippcm(f,g_1)}{Im(g)}f - \frac{Ippcm(f,g_1)}{Im(f)}g$$

Given $G = \{g_i\}$:

- compute a $S(g_i, g_i)$
- reduce it w.r.t to G
- if its remainder is non zero, add it to G

Buchberger's algorithm

For f, g_i in $\mathbb{K}[X, Y]$, we have:

$$S(f,g_1) = \frac{Ippcm(f,g_1)}{Im(g)}f - \frac{Ippcm(f,g_1)}{Im(f)}g$$

Given $G = \{g_i\}$:

- compute a $S(g_i, g_i)$
- reduce it w.r.t to G
- if its remainder is non zero, add it to G

Saturation

Goal

If $M = \langle G \rangle$, compute the GB of

$$M:_{\mathbb{K}[X,Y]}(p)^{\infty}=\{f\in\mathbb{K}[X,Y]|\exists n\in\mathbb{N},f\times(p)^n\in M\}$$

Saturation

Goal

If $M = \langle G \rangle$, compute the GB of

$$M:_{\mathbb{K}[X,Y]}(p)^{\infty}=\{f\in\mathbb{K}[X,Y]|\exists n\in\mathbb{N},f\times(p)^n\in M\}$$

Magic trick

- compute the GB of $G \cup (1-tp)$, with t a fresh variable
- keep only the base element not containing t.

$$\Gamma \models X, g^{f_1}, ..., g^{f_k} \vdash g^h$$

With Gröbner Basis

1. Characterize the attacker knowledge:

$$M = \{ \sum_{i} e_i \times f_i | e_i \in \mathbb{K}[X] \}$$

2. Saturate using the axioms, if $\Gamma = \{p_k \neq 0\}$:

$$M:_{\mathbb{K}[X,Y]}(p_1...p_n)^{\infty}=\{f\in\mathbb{K}[X,Y]|\exists n\in\mathbb{N},f\times(p_1...p_n)^n\in M\}$$

3. Test the membership.

Conclusion

Conclusion

It is a good idea to to have general knowledge in math when doing computer science!