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Introduction



Practical Context

Who am I ?
A third year PhD Student, working in Paris and Nancy, supervised
by:

• Hubert Comon-Lundh - LSV

• Steve Kremer - LORIA
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The goal

We want security !
We want formal proofs of security, in the computational model.

But:

• There is few automation;

• proofs are long and error-prone;

• there is no modularity;

• and proofs size grows w.r.t to the size of the protocol.
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Our contributions

The composition framework

• Allows to split the security of an unbounded number of
sessions of a compound protocol into smaller finite goals;

• allows to consider protocols with state passing and long term
shared secrets;

• naturally translates to the BC model, and allows for the first
time to perform proofs for an unbounded number of sessions in
this model.

3



Our contributions

The composition framework

• Allows to split the security of an unbounded number of
sessions of a compound protocol into smaller finite goals;

• allows to consider protocols with state passing and long term
shared secrets;

• naturally translates to the BC model, and allows for the first
time to perform proofs for an unbounded number of sessions in
this model.

3



Our contributions

The composition framework

• Allows to split the security of an unbounded number of
sessions of a compound protocol into smaller finite goals;

• allows to consider protocols with state passing and long term
shared secrets;

• naturally translates to the BC model, and allows for the first
time to perform proofs for an unbounded number of sessions in
this model.

3



The BC model ?



A quick introduction to the BC model

A protocol

A
sign(r ,skA)−−−−−−−→ B

| Checks the signature
<“ok”,r>←−−−−−−

In BC
Protocols are modelled with sequences of terms:

φ0 := sign(r , skA)

φ1 := φ0,
if ( checksign(g0(φ0), pk(skA))) then
< “ok”, getmess(g0(φ0))) >
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A quick introduction to the BC model

A protocol
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A quick introduction to the BC model

How to reason on terms ?
A first order logic built over a predicate:

t1 ∼ t2

For all η, for all interpretations of free function symbols by PPT,
any attacker can only distinguish between t1 and t2 with negligible
probability.
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A quick introduction to the BC model

How to make proofs
Logical rules allow to reason about ∼:

• for any term t, t ∼ t

• for any function symbol f and terms t1, . . . , tn, t ′1, . . . , t
′
n,

t1, . . . , tn ∼ t ′1, . . . , t
′
n ⇒ f (t1, . . . , tn) ∼ f (t ′1, . . . , t

′
n)

• transitivity, branching over conditionals, . . .
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A quick introduction to the BC model

EUF-CMA
For all terms t such that sk only appears in key position:

checksign(t, pk(sk)))⇒∨
sign(x ,sk)∈ St(t) t

.
= sign(x , sk)

∼ true
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A quick introduction to the BC model

A reminder of our protocol
φ0 := sign(r , skA)

φ1 := φ0,
if ( checksign(g0(φ0), pk(skA))) then
< “ok”, getmess(g0(φ0))) >)

A security property
EUF-CMA |= φ1 ∼

sign(r , skA),
if ( checksign(g0(φ0), pk(skA))) then
< “ok”, r >
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A compositional framework inside
the computational model



A classical proof technique

A is trying to break protocol P, while also having access to Q.

A

P Q
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Simulation

The main idea
If A can simulate it, i.e produce exactly all the same messages:

we remove Q from the picture!

The difficulty
If P and Q share some secret key sk , A cannot simulate messages
which require sk .
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The main idea

Exemple for signatures

• Psk may produce sign(< m, “tag1” >, sk)

• Qsk may produce sign(< m′, “tag2” >, sk)

To prove P while abstracting Q, the attacker must be able to
produce sign(< m′, “tag2” >, sk).

↪→ We may give an oracle to the attacker, allowing to obtain
sign(< m′, “tag2” >, sk) but not sign(< m, “tag1” >, sk)
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The main idea

A is trying to break protocol P, while simulating Q thanks to
oracle O.

A

Psk QskBO
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The main idea

A is trying to break protocol P, while simulating Q thanks to
oracle O.
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In the BC model

Classical Setting
To prove the security of P against A, we define axioms Ax that are
sound for any PPT, and prove that Ax |= φP .

New Axioms
To prove P against AO, we just have find axioms AxO that are
sounds for all PPTOM.
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On an example



A small DDH example

Signed DDH
A(a, skA) B(b, skB)

sign(ga,skA)−−−−−−−−−−−→
xB = ga

sign(<ga,gb>,skB)←−−−−−−−−−−−−−−−
xA = gb

sign(<ga,gb>,skA)−−−−−−−−−−−−−−−→
kA = xaA kB = xbB
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A small DDH example

The security property:
‖i≤N(A(ai , skA); out(kA)‖B(bi , skB); out(kB))

∼
‖i≤N−1(A(ai , skA); out(kA)‖B(bi , skB); out(kB))
‖ A(aN , skA); if xA = gbN then out(kN,N)

else if xA /∈ {gbi}1≤i≤N then ⊥
‖ B(bN , skB); if xB = gaN then out(kN,N)

else if xB /∈ {gai}1≤i≤N then ⊥
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A small DDH example

The final security property:
Let’s assume the attacker can simulate

‖i≤N−1(A(ai , skA); out(kA)‖B(bi , skB); out(kB))

.

We can simply prove:

A(aN , skA); out(kA)‖B(bN , skB); out(kB)
∼

A(aN , skA); if xA = gbN then out(kN,N)

else if xA /∈ {gbi}1≤i≤N then ⊥
‖ B(bN , skB); if xB = gaN then out(kN,N)

else if xB /∈ {gai}1≤i≤N then ⊥

↪→ How to simulate the N − 1 sessions ?
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Simulating the sessions

What must the attacker be able to produce ?
He must be able to start some A:

∀1 ≤ i ≤ N − 1. sign(gai , skA)

And for any DDH share r he receives, he should be able to produce:

• ∀1 ≤ i ≤ N − 1. sign(< gai , r >, skA)

• ∀1 ≤ i ≤ N − 1. sign(< r , gbi >, skB)
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Generic signing oracles

T signing oracle
Osign

T ,sk : input(m)

if T (m) then
output(sign(m, sk)))

Give the attacher access to Osign
T ,skA and Osign

T ,skB with:

T (m) = true⇔ ∃1 ≤ i ≤ N − 1, r .


m = gai

m =< gai , r >

m =< r , gbi >

↪→ How to make the proof for such attackers ?

18
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Generic axioms

T-EUFCMA
For any computable function T , for all terms t such that sk only
appears in key position:

checksign(t, pk(sk)))⇒
T ( getmess(t))∨

sign(x ,sk)∈ St(t)(t
.
= sign(x , sk)))

∼ true
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The final proof

Assumption
checksign(t, pk(sk)))⇒
∃1 ≤ i ≤ N − 1, r . getmess(t) ∈ {gai , < gai , r >,< r , gbi >}∨

sign(x ,sk)∈ St(t)(t
.
= sign(x , sk)))

∼ true

∧ DDH : gaN , gbN , gaNbN ∼ gaN , gbN , kN,N
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The final proof

Goal
A(aN , skA); out(kA)‖B(bN , skB); out(kB)

∼
A(aN , skA); if xA = gbN then out(kN,N)

else if xA /∈ {gbi}1≤i≤N then ⊥
‖ B(bN , skB); if xB = gaN then out(kN,N)

else if xB /∈ {gai}1≤i≤N then ⊥
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The final proof

Synchronization

A(aN , skA); if xA = gbN then out(gaNbN )

else if xA /∈ {gbi}1≤i≤N then out(xaNA )

‖ B(bN , skB); if xB = gaN then out(gaNbN )

else if xB /∈ {gai}1≤i≤N then out(xbNB )

∼
A(aN , skA); if xA = gbN then out(kN,N)

else if xA /∈ {gbi}1≤i≤N then ⊥
‖ B(bN , skB); if xB = gaN then out(kN,N)

else if xB /∈ {gai}1≤i≤N then ⊥

22



The final proof

Synchronization

A(aN , skA); if xA = gbN then out(gaNbN )

else if xA /∈ {gbi}1≤i≤N then out(xaNA )

‖ B(bN , skB); if xB = gaN then out(gaNbN )

else if xB /∈ {gai}1≤i≤N then out(xbNB )

∼
A(aN , skA); if xA = gbN then out(kN,N)

else if xA /∈ {gbi}1≤i≤N then ⊥
‖ B(bN , skB); if xB = gaN then out(kN,N)

else if xB /∈ {gai}1≤i≤N then ⊥

22



The final proof

Synchronization

A(aN , skA); if xA = gbN then out(gaNbN )

else if xA /∈ {gbi}1≤i≤N then out(xaNA )

‖ B(bN , skB); if xB = gaN then out(gaNbN )

else if xB /∈ {gai}1≤i≤N then out(xbNB )

∼
A(aN , skA); if xA = gbN then out(kN,N)

else if xA /∈ {gbi}1≤i≤N then ⊥
‖ B(bN , skB); if xB = gaN then out(kN,N)

else if xB /∈ {gai}1≤i≤N then ⊥

22



The final proof

Synchronization
Proof steps Split the conditonals into four cases and,

1. use DDH to show indistinguishability,

2. use T-EUF-CMA, to show that xA /∈ {gbi}1≤i≤N is never true
(e.g, ⊥ unreachable),

3. similar to (2);

4. similar to (2);
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Conclusion



Done and to do?

The composition framework

• Composition results for parallel and sequential composition (in
the BC model),

• allows for long-term shared secrets and state-passing,

• allows for reduction from unbounded number of sessions to a
single one,

• applied to key exchange (with key confirmations).
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Done and to do?

A tool
We are working on an interactive prover:

1. First allow to performe (un)-reachability proofs, (WIP)

2. then integrate with indistinguishability proofs,

3. and use the composition framework along with the tool to
perform case studies.
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Extra slides with too many details



A core theorem

Composition without replication
Let C [_1, . . . ,_n] be a context such that the variable ki is bound
in each hole _i and P1(x), . . . ,Pn(x) be parametrized protocols,
such that all channels are disjoint. Given an oracle O , with
n ⊃ N (C ) ∩N (P1, . . . ,Pn), if, with k ′1, . . . , k

′
n fresh names,

1. C [out(1, k1), . . . , out(n, kn)] ∼=O C [out(1, k ′1), . . . , out(n, k
′
n)]

2. νn.in(x).P1(x)‖ . . . ‖in(x).Pn(x) is O-simulatable

Then C [P1(k1), . . . ,Pn(kn)] ∼=O C [P1(k
′
1), . . . ,Pn(k

′
n)]
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A core theorem

Unbounded parallel Composition
Let Or be an oracle and Ax a set of axioms both parametrized by a
sequence of names s. Let p be a sequence of shared secrets, P(x),
R(x , y , z) and Q(x , y) be parametrized protocols. If we have, for a
sequence of names lsid and any integers n, if with
s = lsid1, . . . , lsidn n copies of lsid :

1. ∀ 1 ≤ i ≤ n, νp.tR(p,lsid i ,s)
is Or simulatable.

2. Ax is Or sound.

3. Ax |= tP(p) ∼ tQ(p,s)

Then, for any integer n:

P(p)‖ !nR(p, lsid , s)
∼= Q(p, s)‖ !nR(p, lsid , s)

27



A core theorem

Unbounded parallel Composition
Let Or be an oracle and Ax a set of axioms both parametrized by a
sequence of names s. Let p be a sequence of shared secrets,
P(x , y) and Q(x , y , z) be parametrized protocols. If we have, for
sequences of names lsidp, lsidq and any integers n, if with
s = lsidp,1, . . . , lsidp,n, . . . , lsidq,n sequences of copies of lsidp, lsidq

1. ∀ 1 ≤ i ≤ n, νp.tP(p,lsidp,i )
is Or simulatable.

2. ∀ 1 ≤ i ≤ n, νp.tQ(p,lsidq,i ,s)
is Or simulatable.

3. Ax is Or sound.

4. Ax |= tP(p,lsidp)
∼ tQ(p,lsidq ,s)

Then, for any integers n:

!nP(p, lsidp) ∼=O!nQ(p, s, lsidq)
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