Composition in the BC model

Hubert Comon, Charlie Jacomme, Guillaume Scerri

January 23th, 2020

Introduction

Practical Context

Who am | 7
A third year PhD Student, working in Paris and Nancy, supervised
by:

e Hubert Comon-Lundh - LSV
e Steve Kremer - LORIA

The goal

We want security !
We want formal proofs of security, in the computational model.

The goal

We want security !
We want formal proofs of security, in the computational model.

But:
e There is few automation;
e proofs are long and error-prone;
e there is no modularity;

e and proofs size grows w.r.t to the size of the protocol.

Our contributions

The composition framework

o Allows to split the security of an unbounded number of
sessions of a compound protocol into smaller finite goals;

Our contributions

The composition framework

o Allows to split the security of an unbounded number of
sessions of a compound protocol into smaller finite goals;

e allows to consider protocols with state passing and long term
shared secrets;

Our contributions

The composition framework

o Allows to split the security of an unbounded number of
sessions of a compound protocol into smaller finite goals;

e allows to consider protocols with state passing and long term
shared secrets;

e naturally translates to the BC model, and allows for the first
time to perform proofs for an unbounded number of sessions in

this model.

The BC model ?

A quick introduction to the BC model

A protocol

sign(r,skA)
—E

A B

A quick introduction to the BC model

A protocol

sign(r,skA)
—E

A B

| Checks the signature

A quick introduction to the BC model

A protocol

sign(r,skA)
—E

A B

| Checks the signature
<"ok",r>
<—‘_

A quick introduction to the BC model

A protocol
A sign(r,skA) B
| Checks the signature
<"ok",r>
In BC

Protocols are modelled with sequences of terms:

¢o := sign(r, ska)

A quick introduction to the BC model

A protocol

A sign(r,skA) B

Names represent uniformly sampled (s the signature
bitstrings of length 7

In BC
Protocols are mode\led with sequences of terms:

¢o := sign(r, ska)

A quick introduction to the BC model

A protocol
A sign(r,skA) B
Names represent uniformly sampled (s the signature

bitstrings of length 7

In BC
Protocols are mode\led with sequences of terms:

¢o := sign(r,ska)
b1 = if (checksign(go(¢o), pk(ska))) then
FTTY <ok, getmess(go(¢o))) >

A quick introduction to the BC model

A protocol
A sign(r,skA) B
Names represent uniformly sampled (s the signature

bitstrings of length 7

In BC
Protocols are mode\led with sequences of terms:

¢o = sign(r ska)
b1 = do if (checksign(go(¢o), pk(ska))) then
LR “ok", getmdgs(go(do))) >

Attacker inputs represented with non
instantiated function symbol 4

A quick introduction to the BC model

How to reason on terms ?
A first order logic built over a predicate:

t1 ~ o

A quick introduction to the BC model

How to reason on terms ?
A first order logic built over a predicate:

t1 ~ o

For all n, for all interpretations of free function symbols by PPT,
any attacker can only distinguish between t; and t, with negligible
probability.

A quick introduction to the BC model

How to make proofs
Logical rules allow to reason about ~:

A quick introduction to the BC model

How to make proofs
Logical rules allow to reason about ~:

o foranytermt, t ~t

A quick introduction to the BC model

How to make proofs
Logical rules allow to reason about ~:

o foranytermt, t ~t

e for any function symbol f and terms t1,..., t,, t],...,t

thyeestn~ e th = f(t, ooy tn) ~ F(t], ., t))

A quick introduction to the BC model

How to make proofs
Logical rules allow to reason about ~:

o foranytermt, t ~t

e for any function symbol f and terms t1,..., t,, t],...,t

thyeestn~ e th = f(t, ooy tn) ~ F(t], ., t))

e transitivity, branching over conditionals, ...

A quick introduction to the BC model

EUF-CMA
For all terms t such that sk only appears in key position:

checksign(t, pk(sk))) =
\/sign(x,sk)G St(t) t= Sign(X7 Sk)

A quick introduction to the BC model

EUF-CMA
For all terms t such that sk only appears in key position:
checksign(t, pk(sk))) =

\/sign(x,sk)G St(t) t= Sign(X7 Sk)
~ true

A quick introduction to the BC model

A reminder of our protocol
¢o := sign(r,ska)
b1 = if (checksign(go(¢o), pk(ska))) then
LT o “ok”, getmess(go(¢o))) >)

A quick introduction to the BC model

A reminder of our protocol
¢o := sign(r,ska)
b1 = if (checksign(go(¢o), pk(ska))) then
LT o “ok”, getmess(go(¢o))) >)

A security property
EUF-CMA = ¢1 ~

if (checksign(go(¢o), pk(ska))) then

sign(r, ska), o

A compositional framework inside
the computational model

A classical proof technique

A is trying to break protocol P, while also having access to Q.

P Q

A classical proof technique

A is trying to break protocol P, while also simulating Q.

P B

A classical proof technique

A is trying to break protocol P, while also simulating Q.

P B

A classical proof technique

A is trying to break protocol P, while also simulating Q.

P

A/

A classical proof technique

A is trying to break protocol P, while also simulating Q.

P

A/

The main idea
If A can simulate it, i.e produce exactly all the same messages:

we remove @ from the picture!

10

The main idea
If A can simulate it, i.e produce exactly all the same messages:

we remove @ from the picture!

The difficulty
If P and @ share some secret key sk, A cannot simulate messages

which require sk.

10

Exemple for signatures
o Ps may produce sign(< m, “tag;” >, sk)
o Qg may produce sign(< m', “tag,” >, sk)

11

Exemple for signatures
o Ps may produce sign(< m, “tag;” >, sk)
o Qg may produce sign(< m', “tag,” >, sk)

To prove P while abstracting Q, the attacker must be able to
produce sign(< m’, “tagy” >, sk).

11

Exemple for signatures
o Ps may produce sign(< m, “tag;” >, sk)

o Qg may produce sign(< m', “tag,” >, sk)

To prove P while abstracting Q, the attacker must be able to
produce sign(< m’, “tagy” >, sk).

— We may give an oracle to the attacker, allowing to obtain

sign(< m', “tag,” >, sk) but not sign(< m, “tag;" >, sk)

11

A is trying to break protocol P, while simulating Q thanks to
oracle O.

7Dsk B 9

12

A is trying to break protocol P, while simulating Q thanks to
oracle O.

7Dsk B @

12

A is trying to break protocol P, while simulating Q thanks to
oracle O.

Psk

A/O

12

A is trying to break protocol P, while simulating Q thanks to
oracle O.

7Dsk

A/(’)

12

In the BC model

Classical Setting '
To prove the security of P against A, we define axioms Ax that are

sound for any PPT, and prove that Ax = ¢p.

13

In the BC model

Classical Setting '
To prove the security of P against A, we define axioms Ax that are

sound for any PPT, and prove that Ax = ¢p.

New Axioms
To prove P against A, we just have find axioms Axo that are

sounds for all PPTOM.

13

On an example

A small DDH example

Signed DDH
A(a, skA) B(b, skB)
sign(g?,skA)
xg = g°

sign(<g?,g?>,skB)

xp = g°
sign(<g?,g">,skA)

ka = x3 kg = xg

14

A small DDH example

The security property:
|"<N(A(aj, skA); out(ka)||B(b;, skB); out(kg))
|’<SN=1(A(a;, skA); out(ka)||B(b;, skB); out(kg))
| A(an, skA); if xa = gb¥ then out(kn)
else if x4 ¢ {g”}1<i<n then L
|| B(bn,skB); if xg = g then Out(k/\/J\/)
elseif xg ¢ {g% }1<i<n then L

15

A small DDH example

The final security property:
Let's assume the attacker can simulate

H,'SN—l(A(ai7 skA); out(ka)||B(bi, skB); out(kg))

16

A small DDH example

The final security property:
Let's assume the attacker can simulate

|"<N=1(A(aj, skA); out(kn)|| B(b;, skB); out(kg))
. We can simply prove:

A(ap, skA); out(ka)||B(bn, skB); out(kg)
A(an, skA); if xa = gV then out(ky n)
else if x4 ¢ {g”}1<i<n then L
| B(bn, skB); if xg = gV then out(ky y)
else if xg ¢ {ga"}lgig/\/ then L

16

A small DDH example

The final security property:
Let's assume the attacker can simulate

|"<N=1(A(aj, skA); out(kn)|| B(b;, skB); out(kg))
. We can simply prove:

A(ap, skA); out(ka)||B(bn, skB); out(kg)
A(an, skA); if xa = gV then out(ky n)
else if x4 ¢ {g”}1<i<n then L
| B(bn, skB); if xg = gV then out(ky y)
else if xg ¢ {ga"}lgig/\/ then L

< How to simulate the N — 1 sessions ? 1

Simulating the sessions

What must the attacker be able to produce ?
He must be able to start some A:

V1 <i<N—1.sign(g¥, skA)

17

Simulating the sessions

What must the attacker be able to produce ?
He must be able to start some A:

V1 <i<N—1.sign(g¥, skA)

And for any DDH share r he receives, he should be able to produce:

o V1< i< N-—1 sign(< g%, r>,skA)

17

Simulating the sessions

What must the attacker be able to produce ?
He must be able to start some A:

V1 <i<N—1.sign(g¥, skA)

And for any DDH share r he receives, he should be able to produce:

o V1< i< N-—1 sign(< g%, r>,skA)
o V1< i< N— 1. sign(< r,g% >, skB)

17

Generic signing oracles

T signing oracle
Oi%?k - input(m)
if T(m) then
output(sign(m, sk)))

18

Generic signing oracles

T signing oracle
Oi%?k - input(m)
if T(m) then
output(sign(m, sk)))

. sign sign L
Give the attacher access to (’)tskA and (’)tskB with:

m= g°
T(m):true@ﬂlgigN—Lr. m=< g, r>

m =< r,gb" >

18

Generic signing oracles

T signing oracle
O%L%?k - input(m)
if T(m) then
output(sign(m, sk)))

. sign sign L
Give the attacher access to (’)tskA and (’)tskB with:

m= g°
T(m):true@ﬂlgigN—Lr. m=< g, r>

m =< r,gb" >

— How to make the proof for such attackers ?

18

Generic axioms

T-EUFCMA
For any computable function T, for all terms t such that sk only

appears in key position:
checksign(t, pk(sk))) =
T(getmess(t))
\/sign(x,sk)e St(t)(t = sign(x, sk)))

~ true

19

The final proof

Assumption
checksign(t, pk(sk))) =
J1<i<N-—1,r. getmess(t) <€ {g¥,<g? r> <rgl>}
\/sign(x,sk)e St(t)(t = Sign(X7 Sk)))

~ true

20

The final proof

Assumption
checksign(t, pk(sk))) =
J1<i<N-—1,r. getmess(t) <€ {g¥,<g? r> <rgl>}
\/sign(x,sk)e St(t)(t = Sign(X7 Sk)))
~ true
A DDH : gaN,ng7gaNbN ~ gaN’ng7 kn.y

20

The final proof

Goal
A(an, skA); out(ka)| B(bn, skB); out(kg)
A(aN, SkA); if x4 = ng then out(kN’N)
else if x4 ¢ {gbf}lg,-g,\, then L
| B(bn, skB); if xg = gV then out(ky y)
else if xg ¢ {g%}1<i<n then L

21

The final proof

Synchronization

A(an, skA); if x4 = g®¥ then out(g?vbw)
else if xo ¢ {g”}1<i<n then out(x3")
| B(by, skB); if xg = g2 then out(gv®v)
else if xg ¢ {g }1<i<n then out(xg"’)
A(an, skA); if xa = gV then out(ky n)
else if x4 ¢ {gbf}lgig,\, then L
H B(bN,SkB); if xg = g then out(kN,N)
else if xg ¢ {g%}1<i<n then L

22

The final proof

Synchronization

A(an, skA); if xa = gbv then OUt(gaNbN)
|| B(bNaSkB); |f Xg = gaN then Out(gaNbN)

~

A(an, skA); if xa = gV then out(ky n)

H B(bN,SkB); if xg = g then out(kN,N)

22

The final proof

Synchronization

A(a/\/, SkA);
else if x4 ¢ {gb’}1§i§/\/ then out(x3")
|| B(bNaSkB); |f Xg = gaN then Out(gaNbN)

A(ap, skA);
else if xa ¢ {g?}1<i<n then L
H B(bN,SkB); if xg = g then out(kN,N)

22

The final proof

Synchronization
Proof steps Split the conditonals into four cases and,

23

The final proof

Synchronization
Proof steps Split the conditonals into four cases and,

1. use DDH to show indistinguishability,

23

The final proof

Synchronization
Proof steps Split the conditonals into four cases and,

1. use DDH to show indistinguishability,

2. use T-EUF-CMA, to show that x4 ¢ {g?}1<;<n is never true
(e.g, L unreachable),

23

The final proof

Synchronization
Proof steps Split the conditonals into four cases and,

1.
2.

use DDH to show indistinguishability,

use T-EUF-CMA, to show that xa ¢ {g%}1<i<n is never true
(e.g, L unreachable),

similar to (2);

similar to (2);

23

Conclusion

Done and to do?

The composition framework

o Composition results for parallel and sequential composition (in
the BC model),

24

Done and to do?

The composition framework

o Composition results for parallel and sequential composition (in
the BC model),

o allows for long-term shared secrets and state-passing,

24

Done and to do?

The composition framework

o Composition results for parallel and sequential composition (in
the BC model),

o allows for long-term shared secrets and state-passing,

e allows for reduction from unbounded number of sessions to a

single one,

24

Done and to do?

The composition framework

o Composition results for parallel and sequential composition (in
the BC model),

o allows for long-term shared secrets and state-passing,

e allows for reduction from unbounded number of sessions to a

single one,

e applied to key exchange (with key confirmations).

24

Done and to do?

A tool
We are working on an interactive prover:

1. First allow to performe (un)-reachability proofs, (WIP)

25

Done and to do?

A tool
We are working on an interactive prover:

1. First allow to performe (un)-reachability proofs, (WIP)
2. then integrate with indistinguishability proofs,

25

Done and to do?

A tool
We are working on an interactive prover:

1.
2.
3.

First allow to performe (un)-reachability proofs, (WIP)
then integrate with indistinguishability proofs,

and use the composition framework along with the tool to

perform case studies.

25

Extra slides with too many details

A core theorem

Composition without replication
Let C[_4,...,_,] be a context such that the variable k; is bound

in each hole i and Pi(x),..., Pn(x) be parametrized protocols,

such that all channels are disjoint. Given an oracle O , with
ADN(C)NN(P1,...,Pn), if, with k{,..., k], fresh names,

1. Clout(1, k1), ... ,out(n, k,)] =Zo Clout(1, k{),...,out(n, k)]
2. va.in(x).Pi(x)|| ... [[in(x).Pn(x) is O-simulatable

Then C[Pi(ky),. .., Pa(kn)] Zo CIPL(KL), ..., Pa(K))]

26

A core theorem

Unbounded parallel Composition
Let O, be an oracle and Ax a set of axioms both parametrized by a

sequence of names 5. Let p be a sequence of shared secrets, P(%),
R(x,y,z) and Q(X,y) be parametrized protocols. If we have, for a
sequence of names Isid and any integers n, if with

5= Isidy, ..., Isid, n copies of Isid:

1.V1I<i< n,uﬁ.tR(ﬁm/ 3) is O, simulatable.
2. Ax is O, sound.
3. Ax = tep) ~ to(ps)
Then, for any integer n:
P()| 12R(p, 7, 5)

27

A core theorem

Unbounded parallel Composition
Let O, be an oracle and Ax a set of axioms both parametrized by a

sequence of names 5. Let p be a sequence of shared secrets,
P(x,y) and Q(X,y,Z) be parametrized protocols. If we have, for
sequences of names /sid,, Isid, and any integers n, if with
5=1Isidp1,...,Isidpp, ..., Isidg, sequences of copies of Isidp, Isid

V1<i< n,yﬁ.tp(ﬁmp’i) is O, simulatable.

. Ax is O, sound.

V1I<i< N, VP-top id, ; 5) is O, simulatable.

A w0

AX [o i, ~ to(p ey s)

Then, for any integers n:

2P (P, Isidp) =0!2Q(P, 5, Isidg)
28

	Introduction
	The BC model ?
	A compositional framework inside the computational model
	On an example
	Conclusion
	Extra slides with too many details

