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Introduction



Practical Context

Who am | 7
A third year PhD Student, working in Paris and Nancy, supervised
by:

e Hubert Comon-Lundh - LSV
e Steve Kremer - LORIA



The goal

We want security !
We want formal proofs of security, in the computational model.



The goal

We want security !
We want formal proofs of security, in the computational model.

But:
e There is few automation;
e proofs are long and error-prone;
e there is no modularity;

e and proofs size grows w.r.t to the size of the protocol.
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Our contributions

The composition framework

o Allows to split the security of an unbounded number of
sessions of a compound protocol into smaller finite goals;

e allows to consider protocols with state passing and long term
shared secrets;

e naturally translates to the BC model, and allows for the first
time to perform proofs for an unbounded number of sessions in

this model.
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A quick introduction to the BC model

A protocol
A sign(r,skA) B
Names represent uniformly sampled (s the signature

bitstrings of length 7

In BC
Protocols are mode\led with sequences of terms:

¢o = sign(r ska)
b1 = do if ( checksign(go(¢o), pk(ska))) then
LR “ok", getmdgs(go(do))) >

Attacker inputs represented with non
instantiated function symbol 4
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A quick introduction to the BC model

How to reason on terms ?
A first order logic built over a predicate:

t1 ~ o

For all n, for all interpretations of free function symbols by PPT,
any attacker can only distinguish between t; and t, with negligible
probability.
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A quick introduction to the BC model

How to make proofs
Logical rules allow to reason about ~:

o foranytermt, t ~t

e for any function symbol f and terms t1,..., t,, t],...,t

thyeestn~ e th = f(t, ooy tn) ~ F(t], ., t))

e transitivity, branching over conditionals, ...
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EUF-CMA
For all terms t such that sk only appears in key position:
checksign(t, pk(sk))) =

\/sign(x,sk)G St(t) t= Sign(X7 Sk)
~ true
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A quick introduction to the BC model

A reminder of our protocol
¢o := sign(r,ska)
b1 = if ( checksign(go(¢o), pk(ska))) then
LT o “ok”, getmess(go(¢o))) >)

A security property
EUF-CMA = ¢1 ~

if ( checksign(go(¢o), pk(ska))) then

sign(r, ska), o



A compositional framework inside
the computational model



A classical proof technique

A is trying to break protocol P, while also having access to Q.
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The main idea
If A can simulate it, i.e produce exactly all the same messages:

we remove @ from the picture!

The difficulty
If P and @ share some secret key sk, A cannot simulate messages

which require sk.
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Exemple for signatures
o Ps may produce sign(< m, “tag;” >, sk)

o Qg may produce sign(< m', “tag,” >, sk)

To prove P while abstracting Q, the attacker must be able to
produce sign(< m’, “tagy” >, sk).

— We may give an oracle to the attacker, allowing to obtain

sign(< m', “tag,” >, sk) but not sign(< m, “tag;" >, sk)
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A is trying to break protocol P, while simulating Q thanks to
oracle O.

7Dsk

A/(’)
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Classical Setting '
To prove the security of P against A, we define axioms Ax that are

sound for any PPT, and prove that Ax = ¢p.

13



In the BC model

Classical Setting '
To prove the security of P against A, we define axioms Ax that are

sound for any PPT, and prove that Ax = ¢p.

New Axioms
To prove P against A, we just have find axioms Axo that are

sounds for all PPTOM.

13



On an example




A small DDH example

Signed DDH
A(a, skA) B(b, skB)
sign(g?,skA)
xg = g°

sign(<g?,g?>,skB)

xp = g°
sign(<g?,g">,skA)

ka = x3 kg = xg

14



A small DDH example

The security property:
|"<N(A(aj, skA); out(ka)||B(b;, skB); out(kg))
|’<SN=1(A(a;, skA); out(ka)||B(b;, skB); out(kg))
| A(an, skA); if xa = gb¥ then out(kn )
else if x4 ¢ {g”}1<i<n then L
|| B(bn,skB); if xg = g then Out(k/\/J\/)
elseif xg ¢ {g% }1<i<n then L
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The final security property:
Let's assume the attacker can simulate
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. We can simply prove:
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A small DDH example

The final security property:
Let's assume the attacker can simulate

|"<N=1(A(aj, skA); out(kn)|| B(b;, skB); out(kg))
. We can simply prove:

A(ap, skA); out(ka)||B(bn, skB); out(kg)
A(an, skA); if xa = gV then out(ky n)
else if x4 ¢ {g”}1<i<n then L
| B(bn, skB); if xg = gV then out(ky y)
else if xg ¢ {ga"}lgig/\/ then L

< How to simulate the N — 1 sessions ? 1



Simulating the sessions

What must the attacker be able to produce ?
He must be able to start some A:

V1 <i<N—1.sign(g¥, skA)
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Simulating the sessions

What must the attacker be able to produce ?
He must be able to start some A:

V1 <i<N—1.sign(g¥, skA)

And for any DDH share r he receives, he should be able to produce:

o V1< i< N-—1 sign(< g%, r>,skA)
o V1< i< N— 1. sign(< r,g% >, skB)

17



Generic signing oracles

T signing oracle
Oi%?k - input(m)
if T(m) then
output(sign(m, sk)))
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Generic signing oracles

T signing oracle
O%L%?k - input(m)
if T(m) then
output(sign(m, sk)))

. sign sign L
Give the attacher access to (’)tskA and (’)tskB with:

m= g°
T(m):true@ﬂlgigN—Lr. m=< g, r>

m =< r,gb" >

— How to make the proof for such attackers ?
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Generic axioms

T-EUFCMA
For any computable function T, for all terms t such that sk only

appears in key position:
checksign(t, pk(sk))) =
T( getmess(t))
\/sign(x,sk)e St(t)(t = sign(x, sk)))

~ true

19



The final proof

Assumption
checksign(t, pk(sk))) =
J1<i<N-—1,r. getmess(t) <€ {g¥,<g? r> <rgl>}
\/sign(x,sk)e St(t)(t = Sign(X7 Sk)))

~ true
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The final proof

Assumption
checksign(t, pk(sk))) =
J1<i<N-—1,r. getmess(t) <€ {g¥,<g? r> <rgl>}
\/sign(x,sk)e St(t)(t = Sign(X7 Sk)))
~ true
A DDH : gaN,ng7gaNbN ~ gaN’ng7 kn.y
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The final proof

Goal
A(an, skA); out(ka)| B(bn, skB); out(kg)
A(aN, SkA); if x4 = ng then out(kN’N)
else if x4 ¢ {gbf}lg,-g,\, then L
| B(bn, skB); if xg = gV then out(ky y)
else if xg ¢ {g%}1<i<n then L
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The final proof

Synchronization

A(an, skA); if x4 = g®¥ then out(g?vbw)
else if xo ¢ {g”}1<i<n then out(x3")
| B(by, skB); if xg = g2 then out(gv®v)
else if xg ¢ {g }1<i<n then out(xg"’)
A(an, skA); if xa = gV then out(ky n)
else if x4 ¢ {gbf}lgig,\, then L
H B(bN,SkB); if xg = g then out(kN,N)
else if xg ¢ {g%}1<i<n then L
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The final proof

Synchronization

A(an, skA); if xa = gbv then OUt(gaNbN)
|| B(bNaSkB); |f Xg = gaN then Out(gaNbN)

~

A(an, skA); if xa = gV then out(ky n)

H B(bN,SkB); if xg = g then out(kN,N)
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The final proof

Synchronization

A(a/\/, SkA);
else if x4 ¢ {gb’}1§i§/\/ then out(x3")
|| B(bNaSkB); |f Xg = gaN then Out(gaNbN)

A(ap, skA);
else if xa ¢ {g?}1<i<n then L
H B(bN,SkB); if xg = g then out(kN,N)

22
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The final proof

Synchronization
Proof steps Split the conditonals into four cases and,

1.
2.

use DDH to show indistinguishability,

use T-EUF-CMA, to show that xa ¢ {g%}1<i<n is never true
(e.g, L unreachable),

similar to (2);

similar to (2);
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Done and to do?

The composition framework

o Composition results for parallel and sequential composition (in
the BC model),

o allows for long-term shared secrets and state-passing,

e allows for reduction from unbounded number of sessions to a

single one,

e applied to key exchange (with key confirmations).

24



Done and to do?

A tool
We are working on an interactive prover:

1. First allow to performe (un)-reachability proofs, (WIP)
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Done and to do?

A tool
We are working on an interactive prover:

1.
2.
3.

First allow to performe (un)-reachability proofs, (WIP)
then integrate with indistinguishability proofs,

and use the composition framework along with the tool to

perform case studies.

25



Extra slides with too many details




A core theorem

Composition without replication
Let C[_4,...,_,] be a context such that the variable k; is bound

in each hole i and Pi(x),..., Pn(x) be parametrized protocols,

such that all channels are disjoint. Given an oracle O , with
ADN(C)NN(P1,...,Pn), if, with k{,..., k], fresh names,

1. Clout(1, k1), ... ,out(n, k,)] =Zo Clout(1, k{),...,out(n, k)]
2. va.in(x).Pi(x)|| ... [[in(x).Pn(x) is O-simulatable

Then C[Pi(ky),. .., Pa(kn)] Zo CIPL(KL), ..., Pa(K))]

26



A core theorem

Unbounded parallel Composition
Let O, be an oracle and Ax a set of axioms both parametrized by a

sequence of names 5. Let p be a sequence of shared secrets, P(%),
R(x,y,z) and Q(X,y) be parametrized protocols. If we have, for a
sequence of names Isid and any integers n, if with

5= Isidy, ..., Isid, n copies of Isid:

1.V1I<i< n,uﬁ.tR(ﬁm/ 3) is O, simulatable.
2. Ax is O, sound.
3. Ax = tep) ~ to(ps)
Then, for any integer n:
P()| 12R(p, 7, 5)

27



A core theorem

Unbounded parallel Composition
Let O, be an oracle and Ax a set of axioms both parametrized by a

sequence of names 5. Let p be a sequence of shared secrets,
P(x,y) and Q(X,y,Z) be parametrized protocols. If we have, for
sequences of names /sid,, Isid, and any integers n, if with
5=1Isidp1,...,Isidpp, ..., Isidg, sequences of copies of Isidp, Isid

V1<i< n,yﬁ.tp(ﬁmp’i) is O, simulatable.

. Ax is O, sound.

V1I<i< N, VP-top id, ; 5) is O, simulatable.

A w0

AX [ o i, ~ to(p ey s)

Then, for any integers n:

2P (P, Isidp) =0!2Q(P, 5, Isidg)
28
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