Automates d'arbre

TD $n^{\circ}3$: Relations

October 10th, 2019

Exercise 1: Closure properties - back to basics

- 1. Given a recognizable relation, show that all its cylindrifications and projections are recognizable. (provides explicit trees automatas)
- 2. Is the domain and the image of a binary relation recognizable?
- 3. Given R, R' binary relations, show that $R \circ R'$ is recognizable.
- 4. Give an example of a n-ary relation such that its ith projection followed by its ith cylindrification does not give back the original relation.
- 5. On the contrary, show that ith cylindrification followed by ith projection gives back the original relation.

Exercise 2: Some relations

- 1. Let $\mathcal{F} = \{0(2), 1(2), n(0)\}$. Give an automaton recognizing : $R_1 = \{(t, t') | t, t' \in T(\mathcal{F}), Pos(t) = Pos(t') \land \forall p \in Pos(t), t(p) = 1 \Rightarrow t'(p) = 1\}$
- 2. Let $\mathcal{F} = \{f(2), g(1), a(0)\}$. Is the relation $R_2 = \{(g(t), t) \mid t \in T(\mathcal{F})\}$ recognizable? And if $\mathcal{F} = \{g(1), a(0)\}$?
- 3. Here assume that $\mathcal{F} = \{g(1), a(0)\}$. Is R_2^* recognizable?
- 4. Is $R_3 = \{(t, f(t, t')) \mid t, t' \in T(\mathcal{F})\}$ recognizable?
- 5. Design two relations, one recognizable and one which is not. Challenge your classmates with them.

Exercise 3: Rewriting systems

Let $\mathcal{F} = \{a_i(1) \mid 1 \le i \le n\} \cup \{0(0)\}.$

- 1. Prove that any rewrite system \rightarrow (i.e. the one step rewriting relation) on \mathcal{F} is recognizable.
- 2. Prove that $S = \{(a_1^k(a_1(a_2(a_2^l(0)))), a_1^k(a_2^l(0))) \mid k, p \in \mathbb{N}\}$ is recognizable.
- 3. Prove that S^* is not recognizable.