Automates d'arbre

TD n°2 : Decision problems & tree homomorphisms

September 26, 2019

Exercise 1: Recognizing an abstract language.

- 1) Let \mathcal{E} be a finite set of linear terms on $T(\mathcal{F}, \mathcal{X})$. Prove that $Red(\mathcal{E}) = \{C[t\sigma] \mid C \in \mathcal{E}\}$ $\mathcal{C}(\mathcal{F}), t \in \mathcal{E}, \sigma$ ground substitution is recognizable.
- 2) Prove that if \mathcal{E} contains only ground terms, then one can construct a DFTA recognizing $Red(\mathcal{E})$ whose number of states is at most n+2, where n is the number of nodes of \mathcal{E} .

Solution:

- 1) Do the case where \mathcal{E} is a singleton $\{t\}$, t linear (the general case can be deduced by finite union). $Red(\{t\} \text{ is recognized by the following NFTA} : Q = \{q_{\perp}\} \cup Pos(t),$ $F = \{\epsilon\}$ and $\Delta =$
 - $\star f(q_1, ..., q_n) \longrightarrow q_\perp$ for all $f \in \mathcal{F}, q_1, ..., q_n \in Q$
 - $\star q_{\perp} \longrightarrow p$ for all $p \in Pos(t)$ such that t(p) is a variable
 - $\star f(p.1,...,p.n) \longrightarrow p \text{ if } t(p) = f$
 - $\star f(q_1, ..., q_n) \longrightarrow \epsilon$ for all $f \in \mathcal{F}$ and $q_1, ..., q_n \in Q$ such that there exists $i \in \{1, ..., n\}$ such that $q_i = \epsilon$
- 2) Let $St(\mathcal{E})$ be the set of all subterms of a term in \mathcal{E} . Then the following DFTA \mathcal{A} works : $Q = \{q_t \mid t \in St(\mathcal{E})\} \cup \{q_\perp, q_\top\}, F = \{q_\top\} \text{ and } \Delta =, \forall f \in \mathcal{F}$
 - $\begin{array}{l} \star \ f(q_{t_1},...,q_{t_n}) \longrightarrow q_{f(t_1,...,t_n)} \text{ if } f(t_1,...t_n) \in St(\mathcal{E}) \setminus \mathcal{E} \\ \star \ f(q_{t_1},...,q_{t_n}) \longrightarrow q_{\top} \text{ if } f(t_1,...,t_n) \in \mathcal{E} \end{array}$

 - $\star f(q_{t_1}, ..., q_{t_n}) \longrightarrow q_\perp$ else
 - $\begin{array}{l} \star \ f(q_1,...,q_n) \longrightarrow q_\top \ \text{if there is at least one } q_i = q_\top \\ \star \ f(q_1,...,q_n) \longrightarrow q_\perp \ \text{else} \end{array}$

We will, for once, and as you should at least for the first few questions of an exam, formally prove that this automaton recognizes the expected language.

- We first prove by induction on the size of the terms, that $\forall t \in St(\mathcal{E}) \setminus \mathcal{E}, L(q_t) = t$. — If $t = a/0 \in St(\mathcal{E}) \setminus \mathcal{E}$, then, the only rule which can produce q_a is $a \longrightarrow q_a$, and we do have $L(q_a) = a$.
- If $t = f(t_1, ..., t_n) \in St(\mathcal{E}) \setminus \mathcal{E}$, the interesting rule is then $f(q_{t_1}, ..., q_{t_n}) \longrightarrow$ $q_{f(t_1,\ldots,t_n)}$. Thus, $L(q_{f(t_1,\ldots,t_n)} = \{f(x_1,\ldots,x_n) | \forall 1 \le i \le n, x_i \in L(q_{t_i})\}$. By the induction hypothesis, we have $\forall 1 \leq i \leq n, L(q_i) = t_i$. Thus, $L(q_{f(t_1,\ldots,t_n)}) =$ $f(t_1, ..., t_n).$

Now, we may prove that by induction on the size n of the terms that $L(q_{\perp}) \supset$ $T^{< n}(\mathcal{F}, \mathcal{X}) \setminus (Red(\mathcal{E}) \cup St(\mathcal{E})) \wedge L(q_{\top}) \supset Red^{< n}(\mathcal{E})$ (we denote with $L^{< n}$ all the terms of L of size at most n).

- If $t = a/0 \notin (Red(\mathcal{E}) \cup St(\mathcal{E}))$, then we have a transition $a \longrightarrow q_{\perp}$.
- If $t = a/0 \in \mathcal{E}$) then we have a transition $a \longrightarrow q_{\top}$.

We do have our property for n = 0.

- If $t = f(t_1, ..., t_n) \in St(\mathcal{E})$, we have obtained previously that $L(q_t) = t$.
- If $t = f(t_1, ..., t_n) \in \mathcal{E}$, the only interesting rule is $f(q_{t_1}, ..., q_{t_n}) \longrightarrow q_{\top}$. As $f(t_1, ..., t_n) \in \mathcal{E}, t_1, ..., t_n \in St(\mathcal{E})$, we obtained that $L(t_i) = q_{t_i}$, and we do have $t \in L(q_{\top}).$

- If $t = f(t_1, ..., t_n) \in Red(\mathcal{E}) \setminus \mathcal{E}$, then there exists $1 \leq i \leq n$ such that $t_i \in Red(\mathcal{E})$. Then, by induction hypothesis, $t_i \in L(q_{\perp})$, the others terms do reaches states are they are either in $L(q_{\perp}), L(q_{\perp})$ or some $L(q_t)$, and we can apply the transition $f(q_1, ..., q_n) \longrightarrow q_{\top}$, which proves that $t \in L(q_{\top})$.
- If $t = f(t_1, ..., t_n) \in T^{\leq n}(\mathcal{F}, \mathcal{X}) \setminus (Red(\mathcal{E}) \cup St(\mathcal{E}))$, then the only transition applicable is $f(q_1, ..., q_n) \longrightarrow q_{\perp}$. As by induction hypothesis the subterms are either in $L(q_{\perp}), L(q_{\perp})$ or some $L(q_t)$, we can indeed apply the transition, and we do have $t \in L(q_{\perp})$.

Finally, we can conclude that $L(q_{\top}) = Red(\mathcal{E})$, which is the expected result.

Exercise 2: Decisions problems

We consider the **(GII)** problem (ground instance intersection) :

Instance : t a term in $T(\mathcal{F}, \mathcal{X})$ and \mathcal{A} a NFTA

- **Question** : Is there at least one ground instance of t accepted by \mathcal{A} ?
- 1) Suppose that t is linear. Prove that (GII) is P-complete.
- 2) Suppose that \mathcal{A} is deterministic. Prove that (GII) is NP-complete.
- 3) Prove that (GII) is EXPTIME-complete. hint : for the hardness, reduce the intersection non-emptiness problem (admitted to be EXPTIME-complete).
- 4) Deduce that the complement problem : **Instance** : t a term in $T(\mathcal{F}, \mathcal{X})$ and linear terms $t_1, ..., t_n$ **Question** : Is there a ground instance of t which is not an instance of any t_i ? is decidable.

Solution:

1) in P : use a construction similar to exercise 1, intersect with \mathcal{A} and test the nonemptiness.

P-hard : testing the emptiness of \mathcal{A} is equivalent to testing (GII) on \mathcal{A} and a variable.

2) in NP : guess for each variable an accessible state of \mathcal{A} and verify that you can complete this to an accepting run by running the automata. If \mathcal{A} was not deterministic, this would not work as we could have the multiple states for the same variable, where a term could have a run terminating in each of the chosen states. Deciding the existence of such terms does not appear to ne in NP.

NP-hard : We reduce **(SAT)** : let $\mathcal{F} = \{\neg(1), \lor(2), \land(2), \bot(0), \top(0)\}$ and \mathcal{A}_{SAT} the DFTA with $Q = \{q_{\top}, q_{\perp}\}, F = \{q_{\top}\}$ and $\Delta =$

- $\star \perp \longrightarrow q_{\perp}$
- $\star \ \top \longrightarrow q_{\top}$
- $\star \neg (q_{\alpha}) \longrightarrow q_{\neg \alpha}$
- $\star \lor (q_{\alpha}, q_{\beta}) \longrightarrow q_{\alpha \lor \beta}$
- $\star \land (q_{\alpha}, q_{\beta}) \longrightarrow q_{\alpha \land \beta}$

The language of \mathcal{A}_{SAT} is the set of closed valid formulae.

Let ϕ a CNF formula, $\phi = \bigwedge_{i=1}^{n} c_i$ where c_i are clauses. Define t_{c_i} by induction on the size of c_i :

- $\text{ if } c_i = x_j, \, t_{c_i} = x_j$
- if $c_i = \neg x_j, t_{c_i} = \neg(x_j)$
- $\begin{array}{l} -- \text{ if } c_i = x_j \lor c'_i, t_{c_i} = \lor (x_j, t_{c'_i}) \\ -- \text{ if } c_i = \neg x_j \lor c'_i, t_{c_i} = \lor (\neg (x_j), t_{c'_i}) \end{array}$

Then $t_{\phi} = \wedge (t_{c_1}, \wedge (t_{c_2}, ..., \wedge (t_{c_{n-1}}, t_{c_n})...)). \phi$ is satisfiable iff a closed instance of t_{ϕ} is recognized by \mathcal{A}_{SAT} .

3) in EXP : for each coloring of t by states (exponentially many) :

- check that the coloring of every occurrence of a variable is an accessible state (in P)
- check that the coloring corresponds to an accepting run (in P)
- for every variable, let $\{q_1, ..., q_n\}$ be the set of the colorings of all occurrence of x. Check that $L(\mathcal{A}_{q_1}) \cap ... \cap L(\mathcal{A}_{q_n})$ is non empty where \mathcal{A}_q is the NFTA obtained from \mathcal{A} by changing the set of final states to $\{q\}$ (in P)

EXP-hard : We reduce intersection non-emptiness : let $(A_k = (Q_k, \mathcal{F}, I_k, \Delta_k))_{k \in \{1, \dots, n\}}$ a finite sequence of top-down NFTA (we can transform a bottom-up NFTA to a topdown one in polynomial time). We suppose that all the Q_k are disjoint. Define :

$$\mathcal{F}' = \mathcal{F} \cup \{h(n)\}$$

- $t = h(x, ..., x)$
- $\tilde{\mathcal{A}} = (\bigsqcup Q_k \sqcup \{q_0\}, \mathcal{F}', \{q_0\}, \Delta' \sqcup \bigsqcup \Delta_k)$ where

$$\Delta' = \{q_0(h(x_1, ..., x_n)) \longrightarrow h(q_1(x_1), ..., q_n(x_n)) \mid for \ q_k \in I_k\}$$

Then $L(\mathcal{A}_1) \cap ... \cap L(\mathcal{A}_n) \neq \emptyset$ iff t has a closed instance in $L(\tilde{\mathcal{A}})$.

4) Use question 3 and exercise 4 of TD1.

Bonus exercise : Direct images of an homomorphism

Let $\mathcal{F} = \{f/2, g/1, a\}$ and $\mathcal{F}' = \{f'/2, g/1, a\}$. Let us consider the tree homomorphism h determined by h_F defined by : $h_{\mathcal{F}}(f) = f'(x_1, x_2), h_{\mathcal{F}}(g) = f'(x_1, x_1)$, and $h_{\mathcal{F}}(a) = a$.

1. Is $h(\mathcal{T}(\mathcal{F}))$ recognizable?

2. Let $L_1 = \{g^i(a) | i \ge 0\}$, then L_1 is a recognizable tree language, is $h(L_1)$ recognizable?