Automates d'arbre

TD n°5 : Hedges and Alternation

Charlie Jacomme

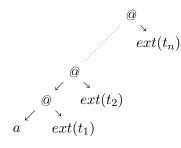
October 16, 2018

Exercise 1: Extensions

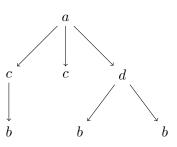
Definition 1 (extension encoding)

Let t be an unranked tree on Σ . Let $\mathcal{F}_{ext}^{\Sigma} = \{@(2)\} \cup \{a(0) \mid a \in \Sigma\}$. We define the ranked tree ext(t) by induction on the size of t by :

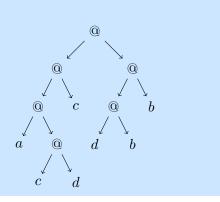
- for $a \in \Sigma$, ext(a) = a
- if $t = a(t_1, ..., t_n)$ with $n \ge 1$, $ext(t) = @(ext(a(t_1, ..., t_{n-1})), ext(t_n))$ that is $ext(a(t_1, ..., t_n))$ is equal to :



Give the extension encoding of :



Solution:



Exercise 2: The soundess of the extension

Let L be a language of unranked trees. Prove that L is recognizable by a NFHA iff ext(L) is recognizable by a NFTA.

Solution:

⇒) Let $\mathcal{A} = \langle Q, \Sigma, \Delta, F \rangle$ be a NFHA recognizing L such that there is exactly one rule of the form $a(L_{a,q}) \longrightarrow q$ for all (a,q) and let $B_{a,q} = \langle P_{a,q}, Q, p_{a,q}^0, \delta_{a,q}, F_{a,q} \rangle$ a deterministic automaton recognizing $L_{a,q}$. We construct the expected NFTA this way :

$$\mathcal{A}' = \langle Q', \mathcal{F}_{ext}^{\Sigma}, \Delta', F' \rangle$$

where :

• $Q' = \bigcup_{(a,q)} P_{a,q}$ • $F' = \bigcup_{(a,q)|q \in F} F_{a,q}$ • $\Delta' = \chi a \longrightarrow p_{a,q}^0$ for all (a,q)

★ $@(p,p') \longrightarrow p''$ if $p, p'' \in P_{b,q}, p' \in F_{a,q'}$ with $\delta_{b,q}(p,q') = p''$ for some b, q, a, q'⇐) Let $\mathcal{A} = \langle Q, \mathcal{F}_{ext}^{\Sigma}, F, \Delta \rangle$ be a NFTA recognizing ext(L). We construct the expected NFHA this way :

$$\mathcal{A}' = \langle Q, \Sigma, F, \Delta' \rangle$$

where for all $(a,q), a(R_{a,q}) \longrightarrow q \in \Delta'$ where $R_{a,q}$ is the language recognized by the automaton :

$$B_{a,q} = \langle Q, Q, I_{a,q}, F_{a,q}, \Delta_{a,q} \rangle$$

with :

I_{a,q} = {p ∈ Q | a → p ∈ Δ}
F_{a,q} =

* {q} if q ∈ F or if there exists q', q" such that @(q',q) → q" ∈ Δ
* Ø else

Δ_{a,q} = {(q₁,q₂,q₃) | @(q₁,q₂) → q₃ ∈ Δ}

Exercise 3: Complexity

Show that the emptiness problem for NFHA(NFA) is in PTIME.

Solution:

We run the emptiness algorithm used to dertermine the emptiness of a NFTA on the extension encoding of the automaton.

Definition 2 If \mathcal{X} is a set of propositional variables, let $\mathbb{B}(\mathcal{X})$ be the set of positive propositional formulae on \mathcal{X} , i.e., formulae generated by the grammar $\phi ::= \bot | \top | x \in X | \phi \lor \phi | \phi \land \phi$.

Definition 3 A AWA (Alternating Word Automata) is a tuple $\mathcal{A} = (Q, \Sigma, Q_0, Q_f, \delta)$ where Σ is a finite set (alphabet), Q is a finite set (of states), $Q_0 \subseteq Q$ (initial states), $Q_f \subseteq Q$ (final states) and δ is a function from $Q \times \Sigma$ to $\mathbb{B}(Q)$ (transition function). A run of $\mathcal{A} = (Q, \Sigma, Q_0, Q_f, \delta)$ on a word w is a tree t labelled by $Q \times \mathbb{N}$ such that :

- if $w = \varepsilon$, then $t = (q_0, 0)$ with $q_0 \in Q_0$.
- if w = a.w', then $t = (q_0, k)(t_1, ..., t_n)$ where k is the length of $w, q_0 \in Q_0$ and such that for all i, t_i is a run of w' on $(Q, \Sigma, \{q_i\}, Q_f, \delta)$ for some q_i satisfying $\{q_1, ..., q_n\} \models \delta(q_0, a)$.

Definition 4 We say that a run is accepting if every leaf of the form (q, 0) satisfies that $q \in Q_f$. Notice that a run may have leaves of the form (q, i) with i > 0 if $\emptyset \models \delta(q_0, a)$. Those leaves are considered as 'success' leaves in this semantic. The language of a AWA is the set of words which have an accepting run.

- 1. Show how to reduce the emptiness problem for an AWA on a one letter alphabet $\{a\}$ whith formalas that are in positive disjunctive normal form to the emptiness problem of a tree automaton.
- 2. Show how to reduce the emptiness problem for a tree automaton to the emptiness problem of an AWA on a one letter alphabet $\{a\}$. Conclude on the complexity of the emptiness problem for an AWA on a one letter alphabet.

Solution:

1. Given $\mathcal{A} = (Q, \Sigma, Q_0, Q_f, \delta)$ an AWA we construct an NFTA of the form $(Q, \{f_k(k) \mid 0 \le k \le n\}, F, \Delta')$ with $F = Q_0$:

$$\delta(q,a) = \bigvee_{i=1}^{n} \bigwedge_{j=1}^{k_{i}} (q_{i,j},i) \Rightarrow \forall i, f_{i}(q_{i,1},...,q_{i,k_{i}}) \longrightarrow q \in \delta'$$

2. Given $\mathcal{A} = (Q, \mathcal{F}, Q_f, \delta)$ an NFTA, we construct the AWA $\mathcal{A}' = (Q \times \mathcal{F}, \{a\}, I, F, \delta')$ with :

$$F = \{(q, f) \mid f \longrightarrow q \in \Delta\}$$
$$I = \{(q, f) \mid q \in Q_f\}$$
$$\delta((q, f), a) = \bigvee_{f(q_1, \dots, q_n) \longrightarrow q \in \delta} \bigwedge_{i=1}^n \bigvee_{f_j \in \mathcal{F}} ((q_i, f_j), i)$$

We deduce that emptiness for AWA on singleton alphabet is P-hard.

Homework for next week : Membership

- 1. Recall the complexity of the uniform membership problem for DFTAs, NFTAs and NF-HAs.
- 2. Prove that (HarderUMembership) : Instance : an NFHA A where the horizontal languages are given by AWA (and not finite automata) and a word w Question : w ∈ L(A) ? is in NP.