Automates d'arbre

TD n°5: Hedges and Alternation

Charlie Jacomme

October 16, 2018

Exercise 1: Extensions

Definition 1 (extension encoding)

Let t be an unranked tree on Σ . Let $\mathcal{F}_{ext}^{\Sigma} = \{@(2)\} \cup \{a(0) \mid a \in \Sigma\}$. We define the ranked tree ext(t) by induction on the size of t by:

- for $a \in \Sigma$, ext(a) = a
- if $t = a(t_1, ..., t_n)$ with $n \ge 1$, $ext(t) = @(ext(a(t_1, ..., t_{n-1})), ext(t_n))$ that is $ext(a(t_1, ..., t_n))$ is equal to :

Give the extension encoding of:

Exercise 2: The soundess of the extension

Let L be a language of unranked trees. Prove that L is recognizable by a NFHA iff ext(L) is recognizable by a NFTA.

Exercise 3: Complexity

Show that the emptiness problem for NFHA(NFA) is in PTIME.

Exercise 4: SUCH AWA

Definition 2 If \mathcal{X} is a set of propositional variables, let $\mathbb{B}(\mathcal{X})$ be the set of positive propositional formulae on \mathcal{X} , i.e., formulae generated by the grammar $\phi := \bot \mid \top \mid x \in X \mid \phi \lor \phi \mid \phi \land \phi$.

Definition 3 A AWA (Alternating Word Automata) is a tuple $\mathcal{A} = (Q, \Sigma, Q_0, Q_f, \delta)$ where Σ is a finite set (alphabet), Q is a finite set (of states), $Q_0 \subseteq Q$ (initial states), $Q_f \subseteq Q$ (final states) and δ is a function from $Q \times \Sigma$ to $\mathbb{B}(Q)$ (transition function). A run of $\mathcal{A} = (Q, \Sigma, Q_0, Q_f, \delta)$ on a word w is a tree t labelled by $Q \times \mathbb{N}$ such that:

- if $w = \varepsilon$, then $t = (q_0, 0)$ with $q_0 \in Q_0$.
- if w = a.w', then $t = (q_0, k)(t_1, ..., t_n)$ where k is the length of w, $q_0 \in Q_0$ and such that for all i, t_i is a run of w' on $(Q, \Sigma, \{q_i\}, Q_f, \delta)$ for some q_i satisfying $\{q_1, ..., q_n\} \models \delta(q_0, a)$.

Definition 4 We say that a run is accepting if every leaf of the form (q,0) satisfies that $q \in Q_f$. Notice that a run may have leaves of the form (q,i) with i > 0 if $\varnothing \models \delta(q_0,a)$. Those leaves are considered as 'success' leaves in this semantic. The language of a AWA is the set of words which have an accepting run.

- 1. Show how to reduce the emptiness problem for an AWA on a one letter alphabet $\{a\}$ whith formalas that are in positive disjunctive normal form to the emptiness problem of a tree automaton .
- 2. Show how to reduce the emptiness problem for a tree automaton to the emptiness problem of an AWA on a one letter alphabet $\{a\}$. Conclude on the complexity of the emptiness problem for an AWA on a one letter alphabet.

Homework for next week : Membership

- 1. Recall the complexity of the uniform membership problem for DFTAs, NFTAs and NF-HAs.
- 2. Prove that (HarderUMembership):

Instance: an NFHA \mathcal{A} where the horizontal languages are given by AWA (and not finite automata) and a word w

Question : $w \in L(A)$?

is in NP.