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Exercise 1 : MSO on finite trees
We consider trees with maximum arity 2. Give MSO formulae which express the following :
1. X is closed under predecessors
2. x ⊆ y (with ⊆ the prefix relation on positions)
3. ’a’ occurs twice on the same path
4. ’a’ occurs twice not on the same path
5. There exists a sub tree with only a’s
6. The frontier word contains the chain ’ab’

Solution:

1. closed(X) := ∀y∀z(y ∈ X ∧ (z ↓1 y) ∨ z ↓2 y))⇒ z ∈ X)

2. x ⊆ y := ∀X(y ∈ X ∧ closed(X)⇒ X(x))

3. ∃x∃y(¬(x = y) ∧ x ⊆ y ∧ Pa(x) ∧ Pa(y))

4. ∃x∃y(¬(y ⊆ x) ∧ ¬(x ⊆ y) ∧ Pa(x) ∧ Pa(y))

5. ∃x∀y(x ⊆ y ⇒ Pa(y))

6. We first implement a way to say that a leaf is next to another one :

x ≺ y := ∃x0∃y0∃z(z ↓1 x0) ∧ (z ↓2 y0) ∧ x0 ⊆ x ∧ y0 ⊆ y)

And with this :

∃x∃y(Fr(x) ∧ Fr(y) ∧ Pa(x) ∧ Pb(y) ∧ x ≺ y ∧ ¬∃z(Fr(z) ∧ x ≺ z ∧ z ≺ y))

Exercise 2 : From formulaes to automaton
Give tree automatons recognizing the languages on trees of maximum arity 2 defined by the
formulae :
1. (x ∈ S ∧ (x ↓1 y ⇒ y ∈ S)) ∧ (z ∈ S ⇒ Pf (z))

2. ∃S.(x ∈ S ∧ (x ↓1 y ⇒ y ∈ S)) ∧ (z ∈ S ⇒ Pf (z))

Solution:

1. We construct an NFTA A1 on Σ × {0, 1}2, which recognizes x ∈ S. The idea is to
reject if we can witness a x /∈ S, and we accept otherwise. So, for all f ∈ F :
— (f, 1, 0)(q1, q2) −→⊥ if ∀i, qi 6=⊥
— (f,_,_)(q1, q2) −→ > if ∀i, qi 6=⊥
We construct an NFTA A2 on Σ × {0, 1}3, which recognizes (x ↓1 y ⇒ y ∈ S)). If
we witness a y /∈ S, we go into a specific state to check if it is not the son of x, thus
failing the formula.
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— (f,, 1, 0)(q1, q2) −→ qy/∈S if ∀i, qi 6=⊥
— (f,, 1, 0)(qy/∈S , q2) −→⊥
— (f,_,_)(q1, q2) −→ > if ∀i, qi 6=⊥
We construct an NFTA A3 on Σ× {0, 1}2, which recognizes (z ∈ S ⇒ Ph(z)).
— (f, 1, 1)(q1, q2) −→⊥ if ∀i, qi 6=⊥,∀f 6= h ∈ F
— (f,_,_)(q1, q2) −→ > if ∀i, qi 6=⊥,∀f ∈ F
Then, with the correct inversed projections, we can transform Ai into A′i on Σ ×
{0, 1}4 with ordering (x, y, z, S), and

⋂
A′i is the desired automaton.

2. We project
⋂
A′i on Σ× {0, 1}3, and we obtain the result.

Exercise 3 : The power of Wsks
Produce formulae of WSkS for the following predicates :
• the set X has exactly two elements.
• the set X contains at least one string beginning with a 1.
• x ≤lex y where ≤lex is the lexicographic order on {1, ...k}∗.
• given a formula of WSkS φ with one free first-order variable, produce a formula of

WSkS expressing that there is an infinity of words on {1, ..., k}∗ satisfying φ.

Solution:
•

|X| ≤ 2
.
= ∀Y. Y ⊆ X ⇒ (Y = ∅ ∨ Sing(Y ) ∨ Y = X)

|X| ≥ 2
.
= ∃x, y. x 6= y ∧ x ∈ X ∧ y ∈ X

|X| = 2
.
= |X| ≤ 2 ∧ |X| ≥ 2

•
X ∩ 1.Σ∗ 6= ∅ .

= ∃x. x ∈ X ∧ 1 ≤ x

•
x ≤lex y

.
= x ≤ y ∨ (∃z.

∨
i<j≤k

(z.i ≤ x ∧ z.j ≤ y))

•
X |= φ

.
= ∀x, x ∈ X ⇒ φ(x)

φ satisfied by an infinity of words .
= ∀X, X |= φ⇒ ∃Y, X ( Y ∧ Y |= φ

Exercise 4 : The limit of Wsks
Prove that the predicate x = 1y is not definable in WSkS.

Solution:
We use the equivalence with recognizable tree languages. So we have to prove that L =
{tra(x, y) | x = 1.y} is not recognizable. Using the translation, we see that

L ∩ {tiσ | ti = 00(i⊥(x1, ..., xk), y2, ..., yk), i ∈ {0, 1}, σ closed substitution}

= {tra(x, y) | x = 1.y ∧ y ∈ {2, ..., k}.{1, ..., k}∗} = L′

So it is enough to prove that L′ is not recognizable. Now elements of L′ are of the form :

00

⊥⊥· · · · · · · · · ⊥⊥

t(p) s(p)
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with p ∈ {2, ..., k}.{1, ..., k}∗, t and s injective and the height of t and s strictly increasing
with p. You can reason by contradiction using the pumping lemma : for p large enough,
using the pumping lemma, you can iterate a piece of t(p) without touching s(p) (or vice
versa) while staying in L′ which is absurd by injectivity.

? ? ?

Homework for next week : To the infinity...
Let Σ = {a, b}. Define a DFHA A such that L(A) is the set of all trees such that "for every
leaf labeled with a, there is an ancestor from which there is a path whose nodes are labeled
with b". Here "ancestor" means strict ancestor and "from which there is a path" means that
there is a path from a son of this ancestor to a leaf.
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