Automates d'arbre

TD n°3: Minimization and Logic

Exercise 1: Minimization results

Definition 1 An equivalence relation \equiv on T is a congruence on $T(\mathcal{F})$ if for every $f \in \mathcal{F}_n$:

$$(\forall i, 1 \leq i \leq n, u_i \equiv v_i) \Rightarrow f(u_1, ..., u_n) \equiv f(v_1, ..., v_n)$$

For a given tree language L, let us define the congruence \equiv_L on $T(\mathcal{F})$ by : $u \equiv_L v$ if for all contexts $C \in C(\mathcal{F})$:

$$C[u] \in L \Leftrightarrow C[v] \in L$$

Prove that the following are equivalent:

- 1. L is a recognizable tree language
- 2. L is the union of some equivalence classes of a congruence of finite index
- 3. the relation \equiv_L is a congruence of finite index. Then, show how to obtain the minimal automaton of a language.

Exercise 2: Let's try to minimize

We consider the complete DFTA on $\mathcal{F} = \{f/2, g/2, a/0, b/0\}$ with states $\{q_a, q_b, q_f, q_g, \top, \bot\}$, finale state \top and transitions :

- $-a \longrightarrow q_a$
- $-b \longrightarrow q_b$
- $f(q_a, q_b) \longrightarrow q_f$
- $-f(q_f,q_b)\longrightarrow \mathring{\top}$
- $\begin{array}{ccc} & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ &$
- $--h(q,q') \longrightarrow \top \text{ if } h \in \{f,g\}, \text{ and } q = \top \text{ or } q' = \top.$
- $-h(q,q') \longrightarrow \perp$ in all other cases.

Give the corresponding minimized algorithm obtained through the partition refinement algorithm.

Exercise 3: MSO on finite trees

We consider trees with maximum arity 2. Give MSO formulae which express the following:

- 1. X is closed under predecessors
- 2. $x \subseteq y$ (with \subseteq the prefix relation on positions)
- 3. 'a' occurs twice on the same path