Exercise 1: Unary Languages

1. Prove that if a unary language is NP-complete, then $P = \text{NP}$.

 Hint: consider a reduction from SAT to this unary language and exhibit a polynomial time recursive algorithm for SAT

2. Prove that if every unary language in NP is actually in P, then $\text{EXP} = \text{NEXP}$.

Solution:

1. Suppose we have a unary language U NP-complete. We then have a reduction R from SAT to U. $R(\phi)$ is computed in polynomial time, so we have p such that $|R(\phi)| \leq p(|\phi|)$. Basically, we can then use the self reducibility of SAT, but by cutting some recursions branching by using the fact that $R(\phi) = R(\psi)$ if and only if ϕ and ψ are both satisfiable or both un-satisfiable. We will write $\phi(t)$ where $t \in \{0, 1\}^*$ to consider partial evaluation of ϕ where we substituted x_i with the truth value of t_i.

 This yields the algorithm, where n is the number of variables in ϕ:

 Initialise hash table H

 $\text{Sat}(\phi)$

 if $|t| = n$ then return 'yes' if $\phi(t)$ has no clauses,

 else return 'no'

 Otherwise, if $R(\phi(t)) \in H$, then return $H(R(\phi(t)))$

 Otherwise, return 'yes' if either $\text{Sat}(\phi(t0))$ or $\text{Sat}(\phi(t1))$.

 return no otherwise

 In both case, set $H(R(\phi(t)))$ to the answer

 There will be at most $p(n)$ different possibles values for the $R(\phi(t))$ (U is unary), so there will be at most $p(n)$ recursive call of the functions. And in every recursive call, we make a computation of R in time $p(n)$. So our algorithms runs in $O(p^2(n))$ which is in P. Thus $\text{SAT} \in P$, and $P = \text{NP}$.

2. For a language L decided in time $T(n)$, we define $L_{pad} = \{1^{(x,10^{T(|x|)})}, x \in L\}$. Let $L \in \text{NEXP}$ recognized by N in time $T(n)$ exponential. We build $N' \in \text{NP}$ which recognizes L_{pad}:

 — On input 1^m, check the well-formdness to obtain $(x, 10^y) = m$

 — Simulate N on x for at most y step

 — Either return the result of N, or reject in case of time out.

 N' does recognizes L_{pad}, and it runs in polynomial times for the first step, and then y step for the second, with y being part of the input. Thus, $N' \in \text{NP}$. But then by assumption, $L \in P$, and we have M a DTM which recognizes L_{pad} in polynomial time. We thus simply construct M' which is in exponential time, which given x computes $1^{(x,10^{T(|x|)})}$ and then simulate M with this input, and we are done.

Exercise 2: On the existence of one-way functions

A one-way function is a bijection f from k-bit integers to k-bit integers such that f is
computable in polynomial time, but \(f^{-1} \) is not. Prove that if there exists one-way functions, then
\[
A = \{(x, y) \mid f^{-1}(x) < y\} \in (\text{NP} \cap \text{coNP}) \setminus P
\]

Solution:
- \(A \in \text{NP} \) : guess a number \(c \), check that \(f(c) = x \), i.e. \(c = f^{-1}(x) \), and finally, that \(c < y \).
- \(A \in \text{coNP} \iff \{(x, y) \mid f^{-1}(x) \geq y\} \in \text{NP} \), which we solve as previously
- \(A \in P \Rightarrow f^{-1} \) computable in polynomial time

Exercise 3: Prime Numbers

1. Show that \(\text{UNARY-PRIME} = \{1^a \mid a \text{ is a prime number}\} \) is in \(P \).
2. Show that \(\text{PRIME} = \{p \mid p \text{ is a prime number encoded in binary}\} \) is in \(\text{coNP} \).
3. We want to prove that \(\text{PRIME} \) is in \(\text{NP} \). Use the following characterization of prime numbers to formulate a non-deterministic algorithm running in polynomial time.
 A number \(p \) is prime if and only if there exists \(a \in [2, p - 1] \) such that:
 (a) \(a^{p-1} \equiv 1 \pmod{p} \), and
 (b) for all \(q \) prime divisor of \(p - 1 \), \(a^{\frac{p-1}{q}} \not\equiv 1 \pmod{p} \)
 To prove that your algorithm runs in polynomial time, you can admit that all common arithmetical operations on \(\mathbb{Z}/p\mathbb{Z} \) can be performed in polynomial time.

Solution:
- 1. For every \(i < n \), we test if \(i \mid n \)
- 2. We guess the two factors
- 3. We guess the \(a \), and then make \(O(p) \) modulo exponentiation.

Exercise 4: Some \(P \)-complete problems

Show the following problems to be \(P \)-complete:
1. — INPUT : A set \(X \), a binary operator \(* \) defined on \(X \), a subset \(S \subseteq X \) and \(x \in X \)
 — QUESTION : Does \(x \) belongs to the closure of \(S \) with respect to \(* \)?
 Hint : for the hardness, reduce from Monotone Circuit Value
2. — INPUT : \(G \) a context-free grammar, and \(w \) a word
 — QUESTION : \(w \in L(G) \)?
 Hint : for the hardness, reduce from the previous problem

Solution:
1. The problem is in \(P \) as we can easily saturate until a fix point is reached. To show the hardness, we reduce Monotone Circuit Value, with gates with maximum two inputs. We are given a circuit \(C = (V, E, \text{label}) \), and we define:
 \[
 X = \{x^0, x^1 \mid x \in V\}
 \]
 \[
 S = \{x^0 \mid x \in X \land \text{label}(x) = \bot\} \cup \{x^1 \mid x \in X \land \text{label}(x) = \top\}
 \]
 \[
 x^i \cdot y^j := \begin{cases}
 t^{i\land j} & \text{if } (x, t) \in E, (y, t) \in E, \text{label}(t) = \land \\
 t^{i\lor j} & \text{if } (x, t) \in E, (y, t) \in E, \text{label}(t) = \lor \\
 \text{undefined} & \text{otherwise}
 \end{cases}
 \]
 Finally, we have:
 \[
v(x) = a \iff x^a \in \text{Closure}(S)(a \in \{0, 1\})
 \]
Exercise 6: Complete problems for levels of \(\text{PH} \)

Show that the following problem is \(\Sigma^P_k \)-complete (under polynomial time reductions).

\(\Sigma_k \text{QBF} \): \(\text{INPUT} \): A quantified boolean formula \(\psi := \exists X_1 \forall X_2 \exists \ldots \exists Q_k X_k \phi(X_1, \ldots, X_k) \), where \(X_1, \ldots, X_k \) are \(k \) disjoint sets of variables, \(Q_k \) is the quantifier \(\forall \) if \(k \) is even, and the quantifier \(\exists \) if \(k \) is odd; \(\phi \) is a boolean formula over variables \(X_1 \cup \cdots \cup X_k \);

— \text{QUESTION} : is the input formula true?

Define a similar problem \(\Pi_k \text{QBF} \) such that \(\Pi_k \text{QBF} \) is \(\Pi^P_k \)-complete.
Exercise 7: Oracle machines

Let O be a language. A Turing machine with oracle O is a Turing machine with a special additional read/write tape, called the oracle tape, and three special states: $q_{\text{query}}, q_{\text{yes}}, q_{\text{no}}$. Whenever the machine enters the state q_{query}, with some word w written on the oracle tape, it moves in one step to the state q_{yes} or q_{no} depending on whether $w \in O$.

We denote by P^O (resp. NP^O) the class of languages decided in polynomial time by a deterministic (resp. non-deterministic) Turing machine with Oracle O. Given a complexity class C, we define $P^C = \bigcup_{O \in C} P^O$ (and similarly for NP^C).

1. Prove that for any C-complete language L, $P^C = P^L$ and $NP^C = NP^L$.
2. Show that for any language L, $P^L = P^L$ and $NP^L = NP^L$.
3. Prove that if $NP = \text{P}^{SAT}$ then $NP = \text{coNP}$.

Solution:

1. We do the proof for NP. Let $B \in NP^C$, we have N a polynomial NTM for B with an oracle O, $C \in C$. We also have a polynomial reduction f such that : $x \in C \Leftrightarrow f(x) \in A$. We build N' for B with oracle A, by simulating N and replacing a call $u \in C?$ with a call $f(u) \in A$?. f is polynomial, so we are still in NP, which concludes the proof.
2. We simply have to swap the states q_{yes} and q_{no} in the computation.
3. P^{SAT} is a deterministic class, so it is closed by complementation, so if $NP = \text{P}^{SAT}$, $\text{coNP} = NP$.
4. (Continued...)

Exercise 8: Collapse of PH

1. Prove that if $\Sigma_k^P = \Sigma_{k+1}^P$ for some $k \geq 0$ then $PH = \Sigma_k^P$. (Remark that this is implied by $P = NP$).
2. Show that if $\Sigma_k^P = \Pi_k^P$ for some k then $PH = \Sigma_k^P$ (i.e. PH collapses).
3. Show that if $PH = \text{PSPACE}$ then PH collapses.
4. Do you think there is a polynomial time procedure to convert any QBF formula into a QBF formula with at most 10 variables?
Solution:

1. We assume that $\Sigma^P_k = \Sigma^P_{k+1}$ for some $k \geq 0$, we prove by induction that $\forall t \geq k, \Sigma^P_k = \Sigma^P_j$. For $j = i$, it is directly correct. For $j > i$, $\Sigma^P_j = \text{NP}^{\Sigma^P_{i+1}} = \text{NP}^{\Sigma^P_i}$ by induction, and thus $\Sigma^P_j = \Sigma^P_i$. By hypothesis, we then have $\Sigma^P_j = \Sigma^P_i$.

2. With the previous question, we just have to prove that $\Sigma^P_k = \Sigma^P_{k+1}$.

Let there be $A \in \Sigma^P_{k+1}$. A can be expressed as follows:

$$x \in A \iff \exists y_1 \in \{0, 1\}^{p(|x|)} \forall y_{k+1} \in \{0, 1\}^{p(|x|)} (x, y_1, \ldots, y_{k+1}) \in B$$

with $B \in \text{P}$. On input, (x, y_1), decide if $\forall y_2 \in \{0, 1\}^{p(|x|)} \forall Q_{k+1} y_{k+1} \in \{0, 1\}^{p(|x|)} (x, y_1, \ldots, y_{k+1}) \in B$ is a problem in $\Pi^P_k = \Sigma^P_k$. We can thus rewrite it as, with $C \in \text{P}$:

$$\exists y_2 \in \{0, 1\}^{p(|x|)} \forall Q_{k+1} y_{k+1} \in \{0, 1\}^{p(|x|)} (x, y_1, \ldots, y_{k+1}) \in C$$

Finally:

$$x \in A \iff \exists y_1, y_2 \in \{0, 1\}^{p(|x|)} \forall Q_{k+1} y_{k+1} \in \{0, 1\}^{p(|x|)} (x, y_1, \ldots, y_{k+1}) \in B$$

with $B \in \text{P}$. And this is the expression of a problem in Σ^P_k. Finally, $\Sigma^P_k = \Sigma^P_{k+1}$.

3. If $\text{PH} = \text{PSPACE}$, then QBF is in Σ^P_k for some k. But QBF is a complete problem for PSPACE, and thus PH. Let there be $B \in \text{PH}$, it can be reduced to $QBF \in \Sigma^P_k$, so $B \in \Sigma^P_k$, and $\text{PH} = \Sigma^P_k$.

4. It is unlikely that PH collapses, and the statement would imply the previous question.

Exercise 9: Relativization

Show that there is an oracle O such that $\text{P}^O = \text{NP}^O$.

Solution:

We have $\text{PSPACE} \subseteq \text{NP}^{\text{PSPACE}}$, we must show the converse. Let there be N a polynomial NTM with oracle $A \in \text{PSPACE}$. We can simulate N in PSPACE on input x by:

— enumerate all possible path of $N^A(x)$
— For each of them, compute the oracle calls
— accept if one of the path accepts.

Each path is in polynomial size, thus the enumeration is, and the oracle calls are PSPACE. We do have $\text{NP}^{\text{PSPACE}} \subseteq \text{PSPACE}$.