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Exercise 1: Unary Languages

1. Prove that if a unary language is NP-complete, then P = NP.
Hint : consider a reduction from SAT to this unary language and exhibit a polynomial
time recursive algorithm for SAT

2. Prove that if every unary language in NP is actually in P, then EXP = NEXP.

Solution:

1. Suppose we have a unary language U NP-complete. We then have a reduction R
from SAT to U. R(¢) is computed in polynomial time, so we have p such that
|R(¢)| < p(|¢|). Basically, we can then use the self reducibility of SAT, but by cutting
some recursions branching by using the fact that R(¢) = R(¢)) if and only if ¢ and
1 are both satisfiable or both un-satisfiable. We will write ¢(t) where t € {0,1}* to
consider partial evaluation of ¢ where we substituted x; with the truth value of ¢;.

This yields the algorithm, where n is the number of variables in ¢ :

Initialise hash table H
Sat (¢)
if |t|l = n then return ’yes’ if ¢(¢) has no clauses,
else return ’no’
Otherwise, if R(¢(t)) € H, then return H(R(¢(t)))
Otherwise, return ’yes’ if either Sat(¢(t0)) or Sat(p(tl)).
return no otherwise
In both case, set H(R(¢(t)) to the answer

There will be at most p(n) different possibles values for the R(¢(¢)) (U is unary),
so there will be at most p(n) recursive call of the functions. And in every recursive

call, we make a computation of R in time p(n). So our algorithms runs in O(p?(n))
wich is in P. Thus SAT € P, and P = NP.

2. For a language L decided in time T'(n), we define Lyqq = {1(9”’10T(‘z|)),:1: € L}. Let
L € NEXP recognized by N in time T'(n) exponential. We build N’ € NP which
recognizes Lpqq :

— On input 1™, check the well-formdness to obtain (z,10Y) = m

— Simulate N on z for at most y step

— Either return the result of IV , or reject in case of time out.

N’ does recognizes Lyqq, and it runs in polynomial times for the first step, and then
y step for the second, with y being part of the input. Thus, N’ € NP. But then by
assumption, L € P, and we have M a DTM which recognizes L,qq in polynomial
time. We thus simply construct M’ which is in exponential time, which given x

computes 1@1070) 214 then simulate M with this input, and we are done.

Exercise 2: On the existence of one-way functions
A one-way function is a bijection f from k-bit intergers to k-bit intergers such that f is



computable in polynomial time, but f~! is not. Prove that if there exists one-way functions,
then

A={(z,y) | f'(z) <y} € (NPNcoNP)\P

Solution:

— A € NP : guess a number ¢, check that f(c) = x,i.e ¢ = f~!(z), and finally, that
c<y.

— A€ coNP & {(z,y) | f~!(x) >=y} € NP, which we solve as previously

— A€ P = f~! computable in polynomial time

Exercise 3: Prime Numbers
1. Show that UNARY-PRIME = {1" | n is a prime number } is in P.
2. Show that PRIME = {p|p is a prime number encoded in binary } is in coNP.

3. We want to prove that PRIME is in NP. Use the following characterization of prime numbers
to formulate a non-deterministic algorithm runing in polynomial time.

A number p is prime if and only if there exists a € [2,p — 1] such that :
(a) a?~! = 1[p], and

—1
(b) for all ¢ prime divisor of p — 1, a’T Z 1[p|

To prove that your algorithm runs in polynomial time, you can admit that all common
arithmetical operations on Z/pZ can be performed in polynomial time.

Solution:
1. For every i < n, we test if i|n
2. We guess the two factors

3. We guess the a, and then make O(p) modulo exponentiation.

Exercise 4: Some P-complete problems
Show the following problems to be P-complete :

1. — INPUT : A set X, a binary operator * defined on X, a subset S C X and x € X
— QUESTION : Does « belongs to the closure of S with respect to *?

Hint : for the hardness, reduce from Monotone Circuit Value

2. — INPUT : G a context-free grammar, and w a word
— QUESTION : w € L(G)?

Hint : for the hardness, reduce from the previous problem

Solution:

1. The problem is in P as we can easily saturate until a fix point is reached. To show
the hardness, we reduce Monotone Circuit Value, with gates with maximum two
inputs. We are given a circuit C' = (V, E, label), and we define :

X = {22zl x eV}

S = {292 € X Alabel(z) =L} U {z!|z € X Alabel(z) = T}

oixyl = N f (x,t) € B, (y,t) € E,label(t) = A
tVI if (z,t) € E, (y,t) € E,label(t) = V
undefined otherwise

Finally, we have :

v(x) = a < z* € Closure(S)(a € {0,1}
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2. CKY is in polynomial time. For the hardness, we reduce from the previous problem.
We are given (X, S, z,*) and we define G = (V,T,S, P) and w € T* in the following
way : w is the empty string, the set of variables V' = X, there is only one terminal
symbol, T'= {a}, the initial variable is S = {z}, and the set of production is :

P={z—yz:yxz=z}U{zx —e:x €S}
We then have :
x € Closure(S) < € can be generated from x in G

Exercise 5: P-choice
A language L is said P-peek (L € Pp) if there is a function f : {0,1}* x 0,1* — {0,1}*
computable in polynomial time such that Vz,y € {0,1}* :

o f(fl',y) € {Z’,y}
— ifx € Loryé€ L then f(z,y) € L
f is called the peeking function for L.

1. Show that P C Pp

2. Show that Pp is closed under complementary

3. Show that if there exist L NP-hard in Pp, then P = NP
4

. Let r € [0,1] a real number, we define L, as the set of words b = by...b, € {0;1}* such
that 0, b1...b, < r. Show that L, € Pp

5. Deduce that there exist a non-recursive language in Pp

Solution:
1. Let there be A € P. We set f(x,y) =z if x € A, and f(z,y) = y otherwise.

2. Let there be A € Pp through f. Then, define f'(z,y) = y if f(z,y) = x and
f(z,y) = = otherwise. f’ is then a peeking function for A° :
— if z € A° and y € A, then f'(z,y) =y € A°
— if z € A° and y € A, then f(x,y) =y and f'(z,y) =z € A°
— ifz € Aand y € A, then f(z,y) =z and f'(z,y) =y € A contains a language
which is undecidable.
3. Let there be A € Pp through f and g a reduction from SAT to A. Here is a

polynomial algorithm for SAT on input ¢ with n variables, where we denote ¢q
(resp. ¢1) the formula ¢ in which the first variable is set to 0 (resp. 1).

For ¢ from 1 to n do

if f(9(¢0),9(#1)) = g(do0) then ¢« ¢o
else ¢+ ¢

Accept iff ¢=T

4. f(z,y) = min(x,y) is a valid selection function for L,

5. Pp is not countable as it contains L, for any r € [0, 1]. Thus, Pp contains a language
which is not decidable.

Exercise 6 : Complete problems for levels of PH
Show that the following problem is $f'-complete (under polynomial time reductions).
YxQBF : ¢ INPUT : A quantified boolean formula ¢ := 3X1VX53...Qp Xo(X1, ..., Xk ), where
X1, .. Xy are k disjoint sets of variables, Qy, is the quantifier V if k is even, and the quantifier
Jif k is odd, ¢ is a boolean formula over variables X7 U ---U X} ;
— QUESTION : is the input formula true?

Define a similar problem II;QBF such that II;QBF is Hf -complete.
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Solution:

— If we are given some X7, ..., X}, we can check in polynomial time if ¢(X7y, ..., Xj) is
true. Thus, it is in Ef.
Let there be A € EkP . A can be expressed as follows :

re A& E|y1 € {0, 1}p|(’”)|Vy2 € {0, l}p‘(x)‘Qkyk € {0, 1}p\(x)|(x7y1’ ...,yk) € B

with B € P.

Let us assume that () = 3, the other case can be done in a similar fashion. Now,
Jyr € {0,131 (2,91, ..., y,) € B is in NP, so by Cook’s theorem, we have ¢ such
that :

Jyi, € {0, 1}p|(x)|(x,y1, o ¥k) € BE 32, dp 4,y 1 (2)

By inspecting Cook’s proof, we can modify ¢ such that the input tape z,y1, ..., yp_1
appear as variables in ¢. We thus have

Elyk € {07 l}pl(x)l(x’yh 7yk) €B & 327 ¢(1’>y1; "'7yk—1az)

And finally :
VS A < Elyluvy27 "'vyk‘—lzlzv ¢<$7y15 sy Ye—1, Z)

Exercise 7: Oracle machines
Let O be a language. A Turing machine with oracle O is a Turing machine with a special
additional read/write tape, called the oracle tape, and three special states : qguery, Qyes, Gno-
Whenever the machine enters the state ggyery, with some word w written on the oracle tape,
it moves in one step to the state gyes or ¢n, depending on whether w € O.

We denote by P© (resp. NPO) the class of languages decided in polynomial time by a deter-
ministic (resp. non-deterministic) Turing machine with Oracle O. Given a complexity class
C, we define P¢ = (o P9 (and similarly for NP).

1. Prove that for any C-complete language L, P€ = PL and NP¢ = NP~.
2. Show that for any language L, PY = PL and NPX = NPL.
3. Prove that if NP = P94T then NP = coNP.

Solution:

1. We do the proof for NP. Let B € NP, we have N a polynomial NTM for B with an
oracle C, C € C. We also have a polynomial reduction f such that : z € C & f(z) €
A. We build N’ for B with oracle A, by simulating N and replacing a call v € C?
with a call f(u) € A?. f is polynomial, so we are still in NP, which concludes the
proof.

2. We simply have to swap the states gyes and g, in the computation.

3. P94T is a deterministic class, so it is closed by complementation, so if NP = PSA4T

coNP = NP
4.

Exercise 8: Collapse of PH

1. Prove that if Ef = Zfﬂ for some k£ > 0 then PH = Ef. (Remark that this is implied by
P = NP).

2. Show that if £f = IIF for some k then PH = X7 (i.e. PH collapses).
3. Show that if PH = PSPACE then PH collapses.

4. Do you think there is a polynomial time procedure to convert any QBF formula into a
QBF formula with at most 10 variables?
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Solution:

1. We assume that Ef = Eerl for some k£ > 0 , we prove by induction that Vi >
k,Z,f = Ef, For j =4, it is directly correcT. For j > i, Ef — NPZ-1 = NPEY by
induction, and thus Zf = Eﬁrl . By hypothesis, we then have Ef =

2. With the previous question, we just have to prove that ©£ = Ekp 11 -

Let there be A € Ekp 41 A can be expressed as follows :

reAs Elyl € {07 1}p|(x)|va+1yk+1 € {07 1}p‘(z)‘(xay17 ”'7yk+1) €B

with B € P.

On input, (x,y1), decide if Vya € {0, 1} Qr 11yx11 € {0, 1IN (, 41, ..., yr11) €
B is a problem in IIZ = Ef . We can thus rewrite it as, with C' € P :

Ely? € {07 1}p|(x)|"'©k+lyk+1 S {07 ]-}p'(x)l(xuyla "'7yk+1) S C
Finally :
z €A I,y € {0, 11PN Qp 1k € {0, 1PN (@, 41, .. ypt1) € B

with B € P. And this is the expression of a problem in E}j . Finally, Ef = ka 41

3. If PH = PSPACE, then QBF is in EkP for some k. But QBF is a complete problem
for PSPACE, and thus PH. Let there be B € PH, it can be reduced to QBF € X7,
so BeXP, and PH = X7

4. Tt is unlikely that PH collapses, and the statement would imply the previous question.

Exercise 9: Relativization
Show that there is an oracle O such that PO = NP©.

Solution:

We have PSPACE C NPPSPACE  we must show the converse. Let there be N a polynomial
NTM with oracle A € PSPACE. We can simulate /N in PSPACE on input z by :

— enumerate all possible path of N4 (z)
— For each of them, compute the oracle calls
— accept if one of the path accepts.

Each path is in polynomial size, thus the enumeration is, and the oracle calls are PSPACE.
We do have NPPSPACE C PSPACE.
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