
Advanced Complexity

TD n◦5

Charlie Jacomme

October 24, 2018

Exercise 1 : Unary Languages
1. Prove that if a unary language is NP-complete, then P = NP.

Hint : consider a reduction from SAT to this unary language and exhibit a polynomial
time recursive algorithm for SAT

2. Prove that if every unary language in NP is actually in P, then EXP = NEXP.

Solution:

1. Suppose we have a unary language U NP-complete. We then have a reduction R
from SAT to U . R(φ) is computed in polynomial time, so we have p such that
|R(φ)| ≤ p(|φ|). Basically, we can then use the self reducibility of SAT, but by cutting
some recursions branching by using the fact that R(φ) = R(ψ) if and only if φ and
ψ are both satisfiable or both un-satisfiable. We will write φ(t) where t ∈ {0, 1}∗ to
consider partial evaluation of φ where we substituted xi with the truth value of ti.
This yields the algorithm, where n is the number of variables in φ :

Initialise hash table H
Sat(φ)

if |t| = n then return ’yes ’ if φ(t) has no clauses ,
else return ’no’

Otherwise , if R(φ(t)) ∈ H, then return H(R(φ(t)))
Otherwise , return ’yes ’ if either Sat(φ(t0)) or Sat(φ(t1)).

return no otherwise
In both case , set H(R(φ(t)) to the answer

There will be at most p(n) different possibles values for the R(φ(t)) (U is unary),
so there will be at most p(n) recursive call of the functions. And in every recursive
call, we make a computation of R in time p(n). So our algorithms runs in O(p2(n))
wich is in P. Thus SAT ∈ P , and P = NP.

2. For a language L decided in time T (n), we define Lpad = {1(x,10T (|x|)), x ∈ L}. Let
L ∈ NEXP recognized by N in time T (n) exponential. We build N ′ ∈ NP which
recognizes Lpad :
— On input 1m, check the well-formdness to obtain (x, 10y) = m
— Simulate N on x for at most y step
— Either return the result of N , or reject in case of time out.
N ′ does recognizes Lpad, and it runs in polynomial times for the first step, and then
y step for the second, with y being part of the input. Thus, N ′ ∈ NP. But then by
assumption, L ∈ P , and we have M a DTM which recognizes Lpad in polynomial
time. We thus simply construct M ′ which is in exponential time, which given x
computes 1(x,10T (|x|)) and then simulate M with this input, and we are done.

Exercise 2 : On the existence of one-way functions
A one-way function is a bijection f from k-bit intergers to k-bit intergers such that f is

1

computable in polynomial time, but f−1 is not. Prove that if there exists one-way functions,
then

A = {(x, y) | f−1(x) < y} ∈ (NP ∩ coNP)\P

Solution:
— A ∈ NP : guess a number c, check that f(c) = x,i.e c = f−1(x), and finally, that

c < y.
— A ∈ coNP⇔ {(x, y) | f−1(x) >= y} ∈ NP , which we solve as previously
— A ∈ P ⇒ f−1 computable in polynomial time

Exercise 3 : Prime Numbers
1. Show that UNARY-PRIME = {1n | n is a prime number } is in P.
2. Show that PRIME = {p|p is a prime number encoded in binary } is in coNP.
3. We want to prove that PRIME is in NP. Use the following characterization of prime numbers

to formulate a non-deterministic algorithm runing in polynomial time.
A number p is prime if and only if there exists a ∈ [2, p− 1] such that :
(a) ap−1 ≡ 1[p], and

(b) for all q prime divisor of p− 1, a
p−1
q 6≡ 1[p]

To prove that your algorithm runs in polynomial time, you can admit that all common
arithmetical operations on Z/pZ can be performed in polynomial time.

Solution:

1. For every i < n, we test if i|n
2. We guess the two factors

3. We guess the a, and then make O(p) modulo exponentiation.

Exercise 4 : Some P-complete problems
Show the following problems to be P-complete :
1. — INPUT : A set X, a binary operator ∗ defined on X, a subset S ⊂ X and x ∈ X

— QUESTION : Does x belongs to the closure of S with respect to ∗ ?
Hint : for the hardness, reduce from Monotone Circuit Value

2. — INPUT : G a context-free grammar, and w a word
— QUESTION : w ∈ L(G) ?
Hint : for the hardness, reduce from the previous problem

Solution:

1. The problem is in P as we can easily saturate until a fix point is reached. To show
the hardness, we reduce Monotone Circuit Value, with gates with maximum two
inputs. We are given a circuit C = (V,E, label), and we define :

X = {x0, x1|x ∈ V }

S = {x0|x ∈ X ∧ label(x) =⊥} ∪ {x1|x ∈ X ∧ label(x) = >}

xi ∗ yj := ti∧j if (x, t) ∈ E, (y, t) ∈ E, label(t) = ∧
ti∨j if (x, t) ∈ E, (y, t) ∈ E, label(t) = ∨
undefined otherwise

Finally, we have :

v(x) = a⇔ xa ∈ Closure(S)(a ∈ {0, 1}

Page 2

2. CKY is in polynomial time. For the hardness, we reduce from the previous problem.
We are given (X,S, x, ∗) and we define G = (V, T, S, P) and w ∈ T ∗ in the following
way : w is the empty string, the set of variables V = X, there is only one terminal
symbol, T = {a}, the initial variable is S = {x}, and the set of production is :

P := {x→ yz : y ∗ z = x} ∪ {x→ ε : x ∈ S}

We then have :

x ∈ Closure(S)⇔ ε can be generated from x in G

Exercise 5 : P-choice
A language L is said P-peek (L ∈ Pp) if there is a function f : {0, 1}∗ × 0, 1∗ → {0, 1}∗
computable in polynomial time such that ∀x, y ∈ {0, 1}∗ :
— f(x, y) ∈ {x, y}
— if x ∈ L or y ∈ L then f(x, y) ∈ L
f is called the peeking function for L.

1. Show that P ⊆ Pp

2. Show that Pp is closed under complementary

3. Show that if there exist L NP-hard in Pp, then P = NP

4. Let r ∈ [0, 1] a real number, we define Lr as the set of words b = b1...bn ∈ {0; 1}∗ such
that 0, b1...bn ≤ r. Show that Lr ∈ Pp

5. Deduce that there exist a non-recursive language in Pp

Solution:

1. Let there be A ∈ P. We set f(x, y) = x if x ∈ A, and f(x, y) = y otherwise.

2. Let there be A ∈ Pp through f . Then, define f ′(x, y) = y if f(x, y) = x and
f ′(x, y) = x otherwise. f ′ is then a peeking function for Ac :
— if x ∈ Ac and y ∈ Ac, then f ′(x, y) = y ∈ Ac

— if x ∈ Ac and y ∈ A, then f(x, y) = y and f ′(x, y) = x ∈ Ac

— if x ∈ A and y ∈ Ac, then f(x, y) = x and f ′(x, y) = y ∈ Ac contains a language
which is undecidable.

3. Let there be A ∈ Pp through f and g a reduction from SAT to A. Here is a
polynomial algorithm for SAT on input φ with n variables, where we denote φ0

(resp. φ1) the formula φ in which the first variable is set to 0 (resp. 1).

For i from 1 to n do
if f(g(φ0), g(φ1)) = g(φ0) then φ← φ0

else φ← φ1

Accept iff φ = >

4. f(x, y) = min(x, y) is a valid selection function for Lr

5. Pp is not countable as it contains Lr for any r ∈ [0, 1]. Thus, Pp contains a language
which is not decidable.

Exercise 6 : Complete problems for levels of PH
Show that the following problem is ΣP

k -complete (under polynomial time reductions).
ΣkQBF : • INPUT : A quantified boolean formula ψ := ∃X1∀X2∃...QkXkφ(X1, ..., Xk), where

X1, ..Xk are k disjoint sets of variables,Qk is the quantifier ∀ if k is even, and the quantifier
∃ if k is odd, φ is a boolean formula over variables X1 ∪ · · · ∪Xk ;

— QUESTION : is the input formula true ?
Define a similar problem ΠkQBF such that ΠkQBF is ΠP

k -complete.

Page 3

Solution:
— If we are given some X1, ..., Xk, we can check in polynomial time if φ(X1, ..., Xk) is

true. Thus, it is in ΣP
k .

— Let there be A ∈ ΣP
k . A can be expressed as follows :

x ∈ A⇔ ∃y1 ∈ {0, 1}p|(x)|∀y2 ∈ {0, 1}p|(x)|...Qkyk ∈ {0, 1}p|(x)|(x, y1, ..., yk) ∈ B

with B ∈ P .
Let us assume that Qk = ∃, the other case can be done in a similar fashion. Now,
∃yk ∈ {0, 1}p|(x)|(x, y1, ..., yk) ∈ B is in NP, so by Cook’s theorem, we have φ such
that :

∃yk ∈ {0, 1}p|(x)|(x, y1, ..., yk) ∈ B ⇔ ∃z, φx,y1,...,yk−1
(z)

By inspecting Cook’s proof, we can modify φ such that the input tape x, y1, ..., yk−1

appear as variables in φ. We thus have

∃yk ∈ {0, 1}p|(x)|(x, y1, ..., yk) ∈ B ⇔ ∃z, φ(x, y1, ..., yk−1, z)

And finally :
x ∈ A⇔ ∃y1,∀y2, ...∀yk−1∃z, φ(x, y1, ..., yk−1, z)

Exercise 7 : Oracle machines
Let O be a language. A Turing machine with oracle O is a Turing machine with a special
additional read/write tape, called the oracle tape, and three special states : qquery, qyes, qno.
Whenever the machine enters the state qquery, with some word w written on the oracle tape,
it moves in one step to the state qyes or qno depending on whether w ∈ O.
We denote by PO (resp. NPO) the class of languages decided in polynomial time by a deter-
ministic (resp. non-deterministic) Turing machine with Oracle O. Given a complexity class
C, we define PC =

⋃
O∈C P

O (and similarly for NP).

1. Prove that for any C-complete language L, PC = PL and NPC = NPL.

2. Show that for any language L, PL = PL̄ and NPL = NPL̄.

3. Prove that if NP = PSAT then NP = coNP.

Solution:

1. We do the proof for NP. Let B ∈ NPC , we have N a polynomial NTM for B with an
oracle C, C ∈ C. We also have a polynomial reduction f such that : x ∈ C ⇔ f(x) ∈
A. We build N ′ for B with oracle A, by simulating N and replacing a call u ∈ C?
with a call f(u) ∈ A?. f is polynomial, so we are still in NP, which concludes the
proof.

2. We simply have to swap the states qyes and qno in the computation.

3. PSAT is a deterministic class, so it is closed by complementation, so if NP = PSAT ,
coNP = NP

4.

Exercise 8 : Collapse of PH

1. Prove that if ΣP
k = ΣP

k+1 for some k ≥ 0 then PH = ΣP
k . (Remark that this is implied by

P = NP).

2. Show that if ΣP
k = ΠP

k for some k then PH = ΣP
k (i.e. PH collapses).

3. Show that if PH = PSPACE then PH collapses.

4. Do you think there is a polynomial time procedure to convert any QBF formula into a
QBF formula with at most 10 variables ?

Page 4

Solution:

1. We assume that ΣP
k = ΣP

k+1 for some k ≥ 0 , we prove by induction that ∀t ≥
k,ΣP

k = ΣP
j , For j = i, it is directly correcT. For j > i, ΣP

j = NPΣP
j−1 = NPΣP

i by
induction, and thus ΣP

j = ΣP
i+1 . By hypothesis, we then have ΣP

j = ΣP
i

2. With the previous question, we just have to prove that ΣP
k = ΣP

k+1 .
Let there be A ∈ ΣP

k+1. A can be expressed as follows :

x ∈ A⇔ ∃y1 ∈ {0, 1}p|(x)|∀...Qk+1yk+1 ∈ {0, 1}p|(x)|(x, y1, ..., yk+1) ∈ B

with B ∈ P.
On input, (x, y1), decide if ∀y2 ∈ {0, 1}p|(x)|...Qk+1yk+1 ∈ {0, 1}p|(x)|(x, y1, ..., yk+1) ∈
B is a problem in ΠP

k = ΣP
k . We can thus rewrite it as, with C ∈ P :

∃y2 ∈ {0, 1}p|(x)|...Qk+1yk+1 ∈ {0, 1}p|(x)|(x, y1, ..., yk+1) ∈ C

Finally :

x ∈ A⇔ ∃y1, y2 ∈ {0, 1}p|(x)|∀...Qk+1yk+1 ∈ {0, 1}p|(x)|(x, y1, ..., yk+1) ∈ B

with B ∈ P. And this is the expression of a problem in ΣP
k . Finally, ΣP

k = ΣP
k+1.

3. If PH = PSPACE, then QBF is in ΣP
k for some k. But QBF is a complete problem

for PSPACE, and thus PH. Let there be B ∈ PH, it can be reduced to QBF ∈ ΣP
k ,

so B ∈ ΣP
k , and PH = ΣP

k

4. It is unlikely that PH collapses, and the statement would imply the previous question.

Exercise 9 : Relativization
Show that there is an oracle O such that PO = NPO.

Solution:
We have PSPACE ⊆ NPPSPACE, we must show the converse. Let there be N a polynomial
NTM with oracle A ∈ PSPACE. We can simulate N in PSPACE on input x by :

— enumerate all possible path of NA(x)
— For each of them, compute the oracle calls
— accept if one of the path accepts.

Each path is in polynomial size, thus the enumeration is, and the oracle calls are PSPACE.
We do have NPPSPACE ⊆ PSPACE.

Page 5

