Exercise 1: Polylogarithmic space
Let \(\text{polyL} = \bigcup_{k \in \mathbb{N}} \text{SPACE}(\log^k(n)) \). Show that \(\text{polyL} \neq \text{P} \).

Exercise 2: Padding argument
1. Show that if \(\text{DSPACE}(n^c) \subseteq \text{NP} \) for some \(c > 0 \), then \(\text{PSPACE} \subseteq \text{NP} \).
2. Deduce that \(\text{DSPACE}(n^c) \neq \text{NP} \).

Exercise 3: My very first PSPACE-complete problem
Show that the following problem is PSPACE-complete (not assuming anything about QBF):
— INPUT: a Turing Machine \(M \) and a word \(w \) and a number \(t \) written in unary
— QUESTION: does \(M \) accepts \(w \) within space \(t \)?

Exercise 4: PSPACE and games
The Geography game is played as follow:
— The game starts with a given name of a city, for instance Cachan;
— the first player gives the name of a city whose first letter coincides with the last letter of the previous city, for instance Nice;
— the second player gives then another city name, always starting with the last letter of the previous city, for instance Evry;
— the first player plays again, and so on – with the restriction that no player is allowed to give the name of a city already used in the game;
— the loser is the first player who does not find a new city name to continue.
This game can be described using a directed graph whose vertices represent cities and where an edge \((X,Y)\) means that the last letter of the city \(X \) is the same as the first letter of the city \(Y \). This graph has also a vertex marked as the initial vertex of the game (the initial city).
Each player choses a vertex of the graph, the first player choses first, and the two players alternate their moves. At each move, the sequence of vertices chosen by the two players must form a simple path in the graph, starting from the distinguished initial vertex.
Player 1 wins the game if, after some number of moves, Player 2 has no valid move (that is no move that forms a simple path with the sequence of previous moves).

GEOGRAPHY is the following problem:
— INPUT: a directed graph \(G \) and an initial vertex \(s \).
— QUESTION: is the player 1 sure to win the game on \(G \) starting at \(s \) ?
Show that GEOGRAPHY is PSPACE-complete by:
1. Showing that GEOGRAPHY is PSPACE
2. That the satisfiability of a QSAT formula of the form \(\exists x_1 \forall x_2 \ldots \exists x_n \wedge (\lor) \) can be expressed as a GEOGRAPHY instance.