Automates d'arbre

TD $n^{\circ}6$: Alternation and PDL

Charlie Jacomme

October 17, 2017

Exercise 1: SUCH AWA

Definition 1 If \mathcal{X} is a set of propositional variables, let $\mathbb{B}(\mathcal{X})$ be the set of positive propositional formulae on \mathcal{X} , i.e., formulae generated by the grammar $\phi ::= \bot | \top | \phi \lor \phi | \phi \land \phi$.

Definition 2 A AWA (Alternating Word Automata) is a tuple $\mathcal{A} = (Q, \Sigma, Q_0, Q_f, \delta)$ where Σ is a finite set (alphabet), Q is a finite set (of states), $Q_0 \subseteq Q$ (initial states), $Q_f \subseteq Q$ (final states) and δ is a function from $Q \times \Sigma$ to $\mathbb{B}(Q)$ (transition function). A run of $\mathcal{A} = (Q, \Sigma, Q_0, Q_f, \delta)$ on a word w is a tree t labelled by $Q \times \mathbb{N}$ such that :

- if $w = \varepsilon$, then $t = (q_0, 0)$ with $q_0 \in Q_0$.
- if w = a.w', then $t = (q_0, k)(t_1, \ldots, t_n)$ where k is the length of $w, q_0 \in Q_0$ and such that for all i, t_i is a run of w' on $(Q, \Sigma, \{q_i\}, Q_f, \delta)$ for some q_i satisfying $\{q_1, \ldots, q_n\} \models \delta(q_0, a)$.

Definition 3 We say that a run is accepting if every leaf of the form (q, 0) satisfies that $q \in Q_f$. Notice that a run may have leaves of the form (q, i) with i > 0 if $\emptyset \models \delta(q_0, a)$. Those leaves are considered as 'success' leaves in this semantic. The language of a AWA is the set of words which have an accepting run.

- 1. Show how to reduce the emptiness problem for an AWA on a one letter alphabet $\{a\}$ whith formalas that are in positive disjunctive normal form to the emptiness problem of a tree automaton.
- 2. Show how to reduce the emptiness problem for a tree automaton to the emptiness problem of an AWA on a one letter alphabet $\{a\}$. Conclude on the complexity of the emptiness problem for an AWA on a one letter alphabet.

Exercise 2: Membership

- 1. Recall the complexity of the uniform membership problem for DFTAs, NFTAs and NF-HAs.
- 2. Prove that (AlternatingUMembership) : Instance : an AWA \mathcal{A} and a word wQuestion : $w \in L(\mathcal{A})$? is in PTIME.
- 3. Prove that (HarderUMembership) : Instance : an NFHA A where the horizontal languages are given by AWA (and not finite automata) and a word w Question : w ∈ L(A) ? is in NP.
- 4. Let Φ be a propositional formula in CNF with *n* variables $x_1, ..., x_n$. Construct, in polynomial time, an AWA \mathcal{A}_{Φ} whose language is $\{w \in \{0, 1\}^n \mid w \models \Phi \text{ i.e. } \Phi_{[x_i \leftarrow w_i]} = \top\}$.

5. Deduce that membership for NFHA where horizontal languages are given by AWA is NP-complete.

Definition 4 (PDL)

The syntax is the following :

$$\phi ::= a \mid \top \mid \neg \phi \mid \phi \lor \phi \mid \langle \pi \rangle \phi \qquad (position \ formulae)$$

$$\pi ::= \downarrow \mid \rightarrow \mid \pi^{-1} \mid \pi; \pi \mid \pi + \pi \mid \pi^* \mid \phi? \qquad (path \ formulae)$$

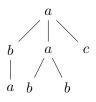
The semantic is defined this way : let t be a tree, we define $[\![\phi]\!]_t$ (resp. $[\![\pi]\!]_t$) as a set of positions of t (resp. a relation on positions of t) by induction on the size of ϕ (resp. π) :

$$\begin{split} \llbracket a \rrbracket_{t} &= \{ w \in Pos(t) \mid t(w) = a \} \\ \llbracket \top \rrbracket_{t} &= Pos(t) \\ \llbracket \neg \phi \rrbracket_{t} &= Pos(t) \\ \llbracket \neg \phi \rrbracket_{t} &= Pos(t) \setminus \llbracket \phi \rrbracket_{t} \\ \llbracket \phi_{1} \lor \phi_{2} \rrbracket_{t} &= \llbracket \phi_{1} \rrbracket_{t} \cup \llbracket \phi_{2} \rrbracket_{t} \\ \llbracket \langle \pi \rangle \phi \rrbracket_{t} &= \llbracket \pi \rrbracket_{t}^{-1}(\llbracket \phi \rrbracket_{t}) \\ \llbracket \pi^{*} \rrbracket_{t} &= \llbracket \pi \rrbracket_{t}^{*} \\ \end{split}$$

Let t be a tree and $w, w' \in Pos(t)$. We note : $-t, w \models \phi \text{ if } w \in \llbracket \phi \rrbracket_t$ $-t \models \phi \text{ if } t, \epsilon \models \phi \text{ and we say that t satisfies } \phi$ $-t, w, w' \models \pi \text{ if } (w, w') \in \llbracket \pi \rrbracket_t$

Exercise 3: Warm up

Let t be the tree :



Which formulae are satisfied by t?

1.
$$\phi_1 = \neg a \lor \langle \downarrow \rangle \left(\neg \langle \leftarrow \rangle \top \land b \land \langle \rightarrow^* \rangle (c \land \neg \langle \rightarrow \rangle \top) \right)$$

2. $\phi_2 = \neg a \lor \langle \downarrow \rangle \left(\neg \langle \leftarrow \rangle \top \land b \land \langle (\rightarrow; c?)^* \rangle (\neg \langle \rightarrow \rangle \top) \right)$
3. $\phi_3 = \langle (a?; \downarrow)^* \rangle (a \land \neg \langle \downarrow \rangle \top)$

Exercise 4: The power of PDL?

Give a translation of PDL in MSO which preserves models. That is, given a position formula ϕ (resp. a path formula π), construct a MSO formula $\tilde{\phi}$ (resp. $\tilde{\pi}$) whose set of free variable is $\{X_a \mid a \in \mathcal{F}\} \cup \{x\}$ (resp. $\{X_a \mid a \in \mathcal{F}\} \cup \{x, y\}$) such that $t, w \models \phi$ iff $(P_a(t))_{a \in \mathcal{F}}, w \models \tilde{\phi}$ (resp. $t, w, w' \models \pi$ iff $(P_a(t))_{a \in \mathcal{F}}, w, w' \models \tilde{\pi}$) where $P_a(t) = \{w \in Pos(t) \mid t(w) = a\}$.

Exercise 5: The exerice we won't have time for

Fix an alphabet \mathcal{F} . Give a PDL formula π such that :

- for all tree t and all position p of t, there exists exactly one position q of t such that $(p,q) \in [\![\pi]\!]_t$ (π defines a function on positions).
- for all tree t and position p of t, $(p,q) \in [\pi^*]_t$ iff q is a position of t such that t(q) = t(p).