Automates d'arbre

TD n°5 : Hedges and Alternation

Charlie Jacomme

October 10, 2017

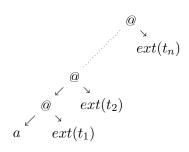
Exercise 1: Extensions

Definition 1 (extension encoding)

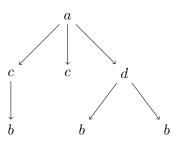
Let t be an unranked tree on Σ . Let $\mathcal{F}_{ext}^{\Sigma} = \{@(2)\} \cup \{a(0) \mid a \in \Sigma\}$. We define the ranked tree ext(t) by induction on the size of t by :

• for $a \in \Sigma$, ext(a) = a

• if $t = a(t_1, ..., t_n)$ with $n \ge 1$, $ext(t) = @(ext(a(t_1, ..., t_{n-1})), ext(t_n))$ that is $ext(a(t_1, ..., t_n))$ is equal to :



Give the extension encoding of :



Exercise 2: The soundess of the extension

Let L be a language of unranked trees. Prove that L is recognizable by a NFHA iff ext(L) is recognizable by a NFTA.

Exercise 3: Complexity

Show that the emptiness problem for NFHA(NFA) is in PTIME.

Definition 2 If \mathcal{X} is a set of propositional variables, let $\mathbb{B}(\mathcal{X})$ be the set of positive propositional formulae on \mathcal{X} , i.e., formulae generated by the grammar $\phi ::= \bot | \top | \phi \lor \phi | \phi \land \phi$.

Definition 3 A AWA (Alternating Word Automata) is a tuple $\mathcal{A} = (Q, \Sigma, Q_0, Q_f, \delta)$ where Σ is a finite set (alphabet), Q is a finite set (of states), $Q_0 \subseteq Q$ (initial states), $Q_f \subseteq Q$ (final states) and δ is a function from $Q \times \Sigma$ to $\mathbb{B}(Q)$ (transition function). A run of $\mathcal{A} = (Q, \Sigma, Q_0, Q_f, \delta)$ on a word w is a tree t labelled by $Q \times \mathbb{N}$ such that :

- if $w = \varepsilon$, then $t = (q_0, 0)$ with $q_0 \in Q_0$.
- if w = a.w', then $t = (q_0, k)(t_1, \ldots, t_n)$ where k is the length of $w, q_0 \in Q_0$ and such that for all i, t_i is a run of w' on $(Q, \Sigma, \{q_i\}, Q_f, \delta)$ for some q_i satisfying $\{q_1, \ldots, q_n\} \models \delta(q_0, a)$.

Definition 4 We say that a run is accepting if every leaf of the form (q, 0) satisfies that $q \in Q_f$. Notice that a run may have leaves of the form (q, i) with i > 0 if $\emptyset \models \delta(q_0, a)$. Those leaves are considered as 'success' leaves in this semantic. The language of a AWA is the set of words which have an accepting run.

1. Let $\Sigma = \{0, 1\}$ and $\mathcal{A} = (Q, \Sigma, Q_0, Q_f, \delta)$ the AWA such that $Q = \{q_0, q_1, q_2, q_3, q_4, q'_1, q'_2\}, Q_f = \{q_0, q_1, q_2, q_3, q_4\}$ and :

$\delta = \{$	$q_0 0 \longrightarrow (q_0 \wedge q_1) \lor q_1'$	$q_0 1 \longrightarrow q_0$
	$q_1 0 \longrightarrow q_2$	$q_1 1 \longrightarrow \top$
	$q_2 0 \longrightarrow q_3$	$q_2 1 \longrightarrow q_3$
	$q_30 \longrightarrow q_4$	$q_31 \longrightarrow q_4$
	$q_40 \longrightarrow \top$	$q_41 \longrightarrow \top$
	$q_1' 0 \longrightarrow q_1'$	$q_1' 1 \longrightarrow q_2'$
	$q_2' 0 \longrightarrow q_2'$	$q_2'1 \longrightarrow q_1'\}$

Give an example of an accepting computation of \mathcal{A} on w = 00101 and an example of a non accepting computation of \mathcal{A} on w.

2. Prove that for all AWA, we can compute in exponential time a non-deterministic automaton which accepts the same language.