Automates d’arbre

TD n°3 : Trees and Logic

Exercise 1: But first, a bit of homomorphism, with nutts.

A bottom-up tree transducer (NUTT) is a tuple U = (Q,F,F',Qf, A) where Q is a finite

set (of states), F and F' are finite ranked sets (of input and output), Q¢ C @ (final states)

and A is a finite set of rules of the form :
o f(qi(z1),....qn(xn)) = q(u) where f € F and u € T(F',{z1,...,zn})
e q(r1) — ¢'(u) where uw € T(F',{x1}).

We say that U is linear when the right side of the rules of A are. This defines a rewrite

system —y on T(F U F U Q). The relation induced by U is then R(U) = {(t,t') | t €

T(F), ' € T(F'), t =3 q(t'), g € Qs}.

1) Prove that tree morphisms are a special case of NUTT that is if y : T(F) — T(F') is
a morphism, then there exists a NUTT U, such that R(U,) = {(t,u(t)) | t € T(F)}. Be
sure that if 4 is linear then U, is too.

2) Prove that the domain of a NUTT U, that is {t € T(F) | 3t' € T(F'), (t,t') € U}, is
recognizable.

3) Prove that the image of a recognizable tree language L by a linear NUTT U, that is
{t' e T(F') |3t €L, (t,t) € U}, is recognizable.

Solution:

1) @ = {a}, @ = {Q} and A =
* flq(z1), ..., q(xn)) — q(p(f)(x1, ..., z5)) linear when p is
2) Q:QU,F:FU and A =
* f(q1,...;qn) — q if there exists u such that f(qi(x1),...,qn(zn)) — q(u) € Ay
* q — ¢ if there exists u such that ¢(z1) — ¢'(u) € Ay
3) Let U aNUTT and A a NFTA on F. For every pair of rules r = f(q1(x1), ..., qn(zn)) —
q(u) € Ay and ' = f(q},...,q,) — ¢’ € A, we define :
— Q" ={qy" | p € Pos(u)}
- Ar,r’ _
* g(q;’g,, - ;t:) — ¢»" for p € Pos(u) such that u(p) = g € F'
* (qi,q}) — ¢y if u(p) = z; (linearity assure that we only have one of this
kind for every 1)
* " — (¢.4)
For every rule r = ¢(x) — ¢'(u) € Ay, we define :
— Q" ={qy | p € Pos(u)} x Qu
AT =
*x 9((ap.1,9"); - (0 1, 4")) — (ap,q") for p € Pos(u) such that u(p) = g € F'
and ¢’ € Q4
* (¢,4") — (g, ¢") if u(p) = = and ¢" € Q4 (linearity assure that we only
have one of this kind)
* (a5,4") — (9:4")
Then this NFTA works :

Q=QuxQuu |J e ue
(rr") 4

F=FyxFyu



A= U AW’UUN
(

r,r') r

Exercise 2: And a bit of minimization

Definition 1 An equivalence relation = on T is a congruence on T (F) if for every f € F, :
(Vi,1 <i<n,u; =v;) = flur,...,un) = f(v1,...,vp)

For a given tree language L, let us define the congruence =1, on T(F) by : u =g, v if for all
contexts C € C(F) :
Clue L& Cv) €L

Prove that the following are equivalent :
1. L is a recognizable tree language
2. L is the union of some equivalence classes of a congruence of finite index
3. the relation =, is a congruence of finite index.
Then, show how to obtain the minimal automaton of a language.

Solution:

— (1) = (2). Assume that L is recognized by some complete DFTA A = (Q, F,Q¢,0).
We consider  as a transition function. Let us consider the relation =4 defined on
T(F) by : u =4 v if §(u) = d(v). Clearly =4 is a congruence relation and it is of
finite index, since the number of equivalence classes is at most the number of states
in Q. Furthermore, L is the union of those equivalence classes that include a term
such that d(u) is a final state.

— (2) = (3). Let us denote by ~ the congruence of finite index, we assume that u ~ v.
We can show by induction that VC' € C(F),C(u) ~ C(v). As L is the union of
some equivalence classes of ~, we have that C'(u) € L < C(v) € L. Finally, we have
that v =, v, and the equivalence class of u in ~ is contained inside the one in =;.
Consequently, the index of =, is lower than ~, which is finite.

— (3) = (1) Let Qmin be the finite set of equivalence classes of L, we write [u] for the
equivalence class of u. Then, we define d,,;, with :

Omin (s [u1], -y [un]) = [f (w1), ..., fun)]

- Wimallly, we Lot ey = |olle € L The DETA Al = (@l i - S
recognizes the language L.

We thus constructed A;,;, which recognizes L. If we consider any automaton A recognizing
L, we have with the first proof the relation =4 which has as many classes as the number of
states of A. And with the second proof, we have that =4 as more classes than =;,. So =, as
less classes than the number of states of A. And finally with the third proof, we have that
the number of classes of =y, is the number of states of A;,;,- In conclusion, any automaton
A recognizing L has more states (or equal) than A,u,. Thus, A, can indeed be called
the minimal automaton.

Exercise 3: MSO on finite trees
We comnsider trees with maximum arity 2. Give MSO formulae which express the following :

X is closed under predecessors

x Cy (with C the prefix relation on positions)
'a’ occurs twice on the same path

'a’ occurs twice not on the same path

There exists a sub tree with only a’s

@ Ot N

The frontier word contains the chain ’ab’
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Solution:

S

. closed(X) :=VyVz(ye X N (z1y)Vzlay)) = 2z€ X)

xCy:=VX(y € X Aclosed(X) = X(x))
2y (—(z = y) Az Sy A Pa(z) A Pa(y))
J23y(=(y € 2) A =(x S y) A Pa(z) A Pa(y))
Ja¥y(z C y = Fa(y))

We first implement a way to say that a leaf is next to another one :
x <y :=JreIyoIz(z 41 o) A (2 J2 o) Axo Sz Ay C y)
And with this :

JxJy(Fr(z) AN Fr(y) A Py(z) APy(y) Ae <y A—-Fz(Fr(z) Az <z Az <7y))
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Exercise 4: From formulaes to automaton
Give tree automatons recognizing the languages on trees of maximum arity 2 defined by the
formulae :

L. (zeSAN(zliy=yel)N(z€S = Piz))
2. 3S(zeSAN(xzliy=>yeS)N(zeS = Pz))

Solution:

1. We construct an NFTA A; on ¥ x {0,1}2, which recognizes x € S. The idea is to
reject if we can witness a ¢ S, and we accept otherwise. So, for all f € F :
— (/,1,0)(q1,92) —L if Vi,q; #L
— (f, , Nar,¢2) — T if Vi,qi #L
We construct an NFTA Ay on ¥ x {0, 1}, which recognizes (z |1 y = y € 9)). If
we witness a y ¢ S, we go into a specific state to check if it is not the son of z, thus
failing the formula.
o (fa, L, O)(Qla q2) — Qy¢s iof Vi,q AL
— (f,,1,0)(qy¢s,q2) —L
— (fi s Na,2) — Tif Viyq #L
We construct an NFTA Az on ¥ x {0, 1}2, which recognizes (z € S = P,(2)).
— (£ 1)1, ) —>L if Vi, ALYV AhEF
T (fv _»_)(Q1,(I2) — T Zf vz’a‘]i #J_,Vf eF
Then, with the correct inversed projections, we can transform A; into A, on 3 x
{0,1}* with ordering (z,¥, z, S), and () 4} is the desired automaton.

2. We project [ AL on ¥ x {0,1}3, and we obtain the result.



