Automates d'arbre

TD n°3 : Trees and Logic

Exercise 1: But first, a bit of homomorphism, with nutts.

A bottom-up tree transducer (NUTT) is a tuple $U = (Q, \mathcal{F}, \mathcal{F}', Q_f, \Delta)$ where Q is a finite set (of states), \mathcal{F} and \mathcal{F}' are finite ranked sets (of input and output), $Q_f \subseteq Q$ (final states) and Δ is a finite set of rules of the form :

- $f(q_1(x_1), ..., q_n(x_n)) \rightarrow q(u)$ where $f \in \mathcal{F}$ and $u \in T(\mathcal{F}', \{x_1, ..., x_n\})$
- $q(x_1) \rightarrow q'(u)$ where $u \in T(\mathcal{F}', \{x_1\})$.

We say that U is linear when the right side of the rules of Δ are. This defines a rewrite system \to_U on $T(\mathcal{F} \cup \mathcal{F}' \cup Q)$. The relation induced by U is then $\mathcal{R}(U) = \{(t, t') \mid t \in T(\mathcal{F}), t' \in T(\mathcal{F}'), t \to_U^* q(t'), q \in Q_f\}$.

- 1) Prove that tree morphisms are a special case of NUTT that is if $\mu : T(\mathcal{F}) \longrightarrow T(\mathcal{F}')$ is a morphism, then there exists a NUTT U_{μ} such that $\mathcal{R}(U_{\mu}) = \{(t, \mu(t)) \mid t \in T(\mathcal{F})\}$. Be sure that if μ is linear then U_{μ} is too.
- 2) Prove that the domain of a NUTT U, that is $\{t \in T(\mathcal{F}) \mid \exists t' \in T(\mathcal{F}'), (t,t') \in U\}$, is recognizable.
- 3) Prove that the image of a recognizable tree language L by a linear NUTT U, that is $\{t' \in T(\mathcal{F}') \mid \exists t \in L, (t, t') \in U\}$, is recognizable.

Solution:

1)
$$Q = \{q\}, Q_f = \{Q\} \text{ and } \Delta =$$

 $\star f(q(x_1), ..., q(x_n)) \longrightarrow q(\mu(f)(x_1, ..., x_n)) \text{ linear when } \mu \text{ is}$
2) $Q = Q_U, F = F_U \text{ and } \Delta =$
 $\star f(q_1, ..., q_n) \longrightarrow q \text{ if there exists } u \text{ such that } f(q_1(x_1), ..., q_n(x_n)) \longrightarrow q(u) \in \Delta_U$
 $\star q \longrightarrow q' \text{ if there exists } u \text{ such that } q(x_1) \longrightarrow q'(u) \in \Delta_U$
3) Let U a NUTT and \mathcal{A} a NFTA on \mathcal{F} . For every pair of rules $r = f(q_1(x_1), ..., q_n(x_n)) \longrightarrow q(u) \in \Delta_U$ and $r' = f(q'_1, ..., q'_n) \longrightarrow q' \in \Delta_A$, we define :
 $-Q^{r,r'} = \{q_p^{r,r'} \mid p \in Pos(u)\}$
 $-\Delta^{r,r'} = \{q_p^{r,r'} \mid p \in Pos(u)\}$
 $-\Delta^{r,r'} = \star g(q_{p,1}^{r,r'}, ..., q_{p,k}^{r,r'}) \longrightarrow q_p^{r,r'} \text{ for } p \in Pos(u) \text{ such that } u(p) = g \in \mathcal{F}'$
 $\star (q_i, q'_i) \longrightarrow q_p^{r,r'} \text{ if } u(p) = x_i \text{ (linearity assure that we only have one of this kind for every i)
 $\star q_{\epsilon}^{r,r'} \longrightarrow (q,q')$
For every rule $r = q(x) \longrightarrow q'(u) \in \Delta_U$, we define :
 $-Q^r = \{q_p^r \mid p \in Pos(u)\} \times Q_A$
 $-\Delta^r =$
 $\star g((q_{p,1}^{r,1}, q''), ..., (q_{p,k}^r, q'')) \longrightarrow (q_p^r, q'') \text{ for } p \in Pos(u) \text{ such that } u(p) = g \in \mathcal{F}'$
and $q'' \in Q_A$
 $\star (q, q'') \longrightarrow (q_p^r, q'') \text{ if } u(p) = x \text{ and } q'' \in Q_A \text{ (linearity assure that we only have only have only have one of this kind)$
 $\star (q_r^r, q'') \longrightarrow (q, q'')$
Then this NFTA works :
 $\tilde{Q} = Q_U \times Q_A \cup \bigcup_{(x,y')} Q^{r,r'} \cup \bigcup_r Q^r$$

 $\tilde{F} = F_U \times F_A$

$$ilde{\Delta} = igcup_{(r,r')} \Delta^{r,r'} \cup igcup_r \Delta^r$$

Exercise 2: And a bit of minimization

Definition 1 An equivalence relation \equiv on T is a congruence on $T(\mathcal{F})$ if for every $f \in \mathcal{F}_n$:

 $(\forall i, 1 \le i \le n, u_i \equiv v_i) \Rightarrow f(u_1, ..., u_n) \equiv f(v_1, ..., v_n)$

For a given tree language L, let us define the congruence \equiv_L on $T(\mathcal{F})$ by : $u \equiv_L v$ if for all contexts $C \in C(\mathcal{F})$:

$$C[u] \in L \Leftrightarrow C[v] \in L$$

Prove that the following are equivalent :

- 1. L is a recognizable tree language
- 2. L is the union of some equivalence classes of a congruence of finite index
- 3. the relation \equiv_L is a congruence of finite index.

Then, show how to obtain the minimal automaton of a language.

Solution:

- (1) \Rightarrow (2). Assume that *L* is recognized by some complete DFTA $A = (Q, F, Q_f, \delta)$. We consider δ as a transition function. Let us consider the relation \equiv_A defined on $T(\mathcal{F})$ by : $u \equiv_A v$ if $\delta(u) = \delta(v)$. Clearly \equiv_A is a congruence relation and it is of finite index, since the number of equivalence classes is at most the number of states in *Q*. Furthermore, L is the union of those equivalence classes that include a term *u* such that $\delta(u)$ is a final state.
- (2) \Rightarrow (3). Let us denote by ~ the congruence of finite index, we assume that $u \sim v$. We can show by induction that $\forall C \in C(\mathcal{F}), C(u) \sim C(v)$. As L is the union of some equivalence classes of ~, we have that $C(u) \in L \Leftrightarrow C(v) \in L$. Finally, we have that $u \equiv_L v$, and the equivalence class of u in ~ is contained inside the one in \equiv_L . Consequently, the index of \equiv_L is lower than ~, which is finite.
- (3) \Rightarrow (1) Let Q_{min} be the finite set of equivalence classes of L, we write [u] for the equivalence class of u. Then, we define δ_{min} with :

$$\delta_{min}(f, [u_1], ..., [u_n]) = [f(u_1), ..., f(u_n)]$$

. Finally, we let $Q_{minf} = \{[u] | u \in L\}$. The DFTA $A_{min} = (Q_{min}, \mathcal{F}_{minf}, \delta_{min})$ recognizes the language L.

We thus constructed A_{min} which recognizes L. If we consider any automaton A recognizing L, we have with the first proof the relation \equiv_A which has as many classes as the number of states of A. And with the second proof, we have that \equiv_A as more classes than \equiv_L . So \equiv_L as less classes than the number of states of A. And finally with the third proof, we have that the number of classes of \equiv_L is the number of states of A_{min} . In conclusion, any automaton A recognizing L has more states (or equal) than A_{min} . Thus, A_{min} can indeed be called the minimal automaton.

Exercise 3: MSO on finite trees

We consider trees with maximum arity 2. Give MSO formulae which express the following :

- 1. X is closed under predecessors
- 2. $x \subseteq y$ (with \subseteq the prefix relation on positions)
- 3. 'a' occurs twice on the same path
- 4. 'a' occurs twice not on the same path
- 5. There exists a sub-tree with only a's
- 6. The frontier word contains the chain 'ab'

Solution:

- 1. $closed(X) := \forall y \forall z (y \in X \land (z \downarrow_1 y) \lor z \downarrow_2 y)) \Rightarrow z \in X)$
- 2. $x \subseteq y := \forall X(y \in X \land closed(X) \Rightarrow X(x))$
- 3. $\exists x \exists y (\neg (x = y) \land x \subseteq y \land P_a(x) \land P_a(y))$
- 4. $\exists x \exists y (\neg (y \subseteq x) \land \neg (x \subseteq y) \land Pa(x) \land P_a(y))$
- 5. $\exists x \forall y (x \subseteq y \Rightarrow P_a(y))$
- 6. We first implement a way to say that a leaf is next to another one :

$$x \prec y := \exists x_0 \exists y_0 \exists z (z \downarrow_1 x_0) \land (z \downarrow_2 y_0) \land x_0 \subseteq x \land y_0 \subseteq y)$$

And with this :

$$\exists x \exists y (Fr(x) \land Fr(y) \land P_a(x) \land P_b(y) \land x \prec y \land \neg \exists z (Fr(z) \land x \prec z \land z \prec y))$$

Exercise 4: From formulaes to automaton

Give tree automatons recognizing the languages on trees of maximum arity 2 defined by the formulae :

- 1. $(x \in S \land (x \downarrow_1 y \Rightarrow y \in S)) \land (z \in S \Rightarrow P_f(z))$
- 2. $\exists S.(x \in S \land (x \downarrow_1 y \Rightarrow y \in S)) \land (z \in S \Rightarrow P_f(z))$

Solution:

- We construct an NFTA A₁ on Σ × {0,1}², which recognizes x ∈ S. The idea is to reject if we can witness a x ∉ S, and we accept otherwise. So, for all f ∈ F :

 (f,1,0)(q₁,q₂) →⊥ if ∀i, q_i ≠⊥
 (f, _, _)(q₁,q₂) →⊤ if ∀i, q_i ≠⊥

 We construct an NFTA A₂ on Σ × {0,1}³, which recognizes (x ↓₁ y ⇒ y ∈ S)). If we witness a y ∉ S, we go into a specific state to check if it is not the son of x, thus failing the formula.

 (f,1,0)(q₁,q₂) → q_{y∉S} if ∀i, q_i ≠⊥
 (f,1,0)(q₁,q₂) → q_{y∉S} if ∀i, q_i ≠⊥
 (f,1,0)(q₁,q₂) → T if ∀i, q_i ≠⊥
 (f,1,0)(q_{y∉S},q₂) →⊥
 (f,1,0)(q₁,q₂) → T if ∀i, q_i ≠⊥

 We construct an NFTA A₃ on Σ × {0,1}², which recognizes (z ∈ S ⇒ P_h(z)).

 (f,1,1)(q₁,q₂) →⊥ if ∀i, q_i ≠⊥, ∀f ≠ h ∈ F
 (f, _, _)(q₁,q₂) →⊤ if ∀i, q_i ≠⊥, ∀f ∈ F

 Then, with the correct inversed projections, we can transform A_i into A'_i on Σ × {0,1}⁴ with ordering (x, y, z, S), and ∩ A'_i is the desired automaton.
- 2. We project $\bigcap A'_i$ on $\Sigma \times \{0,1\}^3$, and we obtain the result.