Automates d'arbre

TD $n^{\circ}3$: Trees and Logic

Exercise 1: But first, a bit of homomorphism, with nutts.

A bottom-up tree transducer (NUTT) is a tuple $U = (Q, \mathcal{F}, \mathcal{F}', Q_f, \Delta)$ where Q is a finite set (of states), \mathcal{F} and \mathcal{F}' are finite ranked sets (of input and output), $Q_f \subseteq Q$ (final states) and Δ is a finite set of rules of the form :

- $f(q_1(x_1), ..., q_n(x_n)) \rightarrow q(u)$ where $f \in \mathcal{F}$ and $u \in T(\mathcal{F}', \{x_1, ..., x_n\})$
- $q(x_1) \rightarrow q'(u)$ where $u \in T(\mathcal{F}', \{x_1\})$.

We say that U is linear when the right side of the rules of Δ are. This defines a rewrite system \rightarrow_U on $T(\mathcal{F} \cup \mathcal{F}' \cup Q)$. The relation induced by U is then $\mathcal{R}(U) = \{(t, t') \mid t \in T(\mathcal{F}), t' \in T(\mathcal{F}'), t \rightarrow_U^* q(t'), q \in Q_f\}$.

- 1) Prove that tree morphisms are a special case of NUTT that is if $\mu : T(\mathcal{F}) \longrightarrow T(\mathcal{F}')$ is a morphism, then there exists a NUTT U_{μ} such that $\mathcal{R}(U_{\mu}) = \{(t, \mu(t)) \mid t \in T(\mathcal{F})\}$. Be sure that if μ is linear then U_{μ} is too.
- 2) Prove that the domain of a NUTT U, that is $\{t \in T(\mathcal{F}) \mid \exists t' \in T(\mathcal{F}'), (t,t') \in U\}$, is recognizable.
- 3) Prove that the image of a recognizable tree language L by a linear NUTT U, that is $\{t' \in T(\mathcal{F}') \mid \exists t \in L, (t, t') \in U\}$, is recognizable.

Exercise 2: And a bit of minimization

Definition 1 An equivalence relation \equiv on T is a congruence on $T(\mathcal{F})$ if for every $f \in \mathcal{F}_n$:

$$(\forall i, 1 \le i \le n, u_i \equiv v_i) \Rightarrow f(u_1, ..., u_n) \equiv f(v_1, ..., v_n)$$

For a given tree language L, let us define the congruence \equiv_L on $T(\mathcal{F})$ by : $u \equiv_L v$ if for all contexts $C \in C(\mathcal{F})$:

$$C[u] \in L \Leftrightarrow C[v] \in L$$

Prove that the following are equivalent :

- 1. L is a recognizable tree language
- 2. L is the union of some equivalence classes of a congruence of finite index
- 3. the relation \equiv_L is a congruence of finite index.

Then, show how to obtain the minimal automaton of a language.

Exercise 3: MSO on finite trees

We consider trees with maximum arity 2. Give MSO formulae which express the following :

- 1. X is closed under predecessors
- 2. $x \subseteq y$ (with \subseteq the prefix relation on positions)
- 3. 'a' occurs twice on the same path
- 4. 'a' occurs twice not on the same path
- 5. There exists a sub-tree with only a's
- 6. The frontier word contains the chain 'ab'

Exercise 4: From formulaes to automaton

Give tree automatons recognizing the languages on trees of maximum arity 2 defined by the formulae :

- 1. $(x \in S \land (x \downarrow_1 y \Rightarrow y \in S)) \land (z \in S \Rightarrow P_f(z))$
- 2. $\exists S.(x \in S \land (x \downarrow_1 y \Rightarrow y \in S)) \land (z \in S \Rightarrow P_f(z))$