Automates d'arbre

TD $n^{\circ}2$: Decision problems & tree homomorphisms

September 19, 2017

Exercise 1: Back from TD1 : an abstract language.

- 1) Let \mathcal{E} be a finite set of linear terms on $T(\mathcal{F}, \mathcal{X})$. Prove that $Red(\mathcal{E}) = \{C[t\sigma] \mid C \in \mathcal{E}\}$ $\mathcal{C}(\mathcal{F}), t \in \mathcal{E}, \sigma$ ground substitution is recognizable.
- 2) Prove that if \mathcal{E} contains only ground terms, then one can construct a DFTA recognizing $Red(\mathcal{E})$ whose number of states is at most n+2, where n is the number of nodes of \mathcal{E} .

Solution:

- 1) Do the case where \mathcal{E} is a singleton $\{t\}$, t linear (the general case can be deduced by finite union). $Red(\{t\})$ is recognized by the following NFTA : $Q = \{q_1\} \cup Pos(t)$, $F = \{\epsilon\}$ and $\Delta =$
 - $\star f(q_1, ..., q_n) \longrightarrow q_{\perp} \text{ for all } f \in \mathcal{F}, q_1, ..., q_n \in Q$
 - $\star q_{\perp} \longrightarrow p$ for all $p \in Pos(t)$ such that t(p) is a variable
 - $\star \ f(p.1,...,p.n) \longrightarrow p \ \text{if} \ t(p) = f$
 - $\star f(q_1, ..., q_n) \longrightarrow \epsilon$ for all $f \in \mathcal{F}$ and $q_1, ..., q_n \in Q$ such that there exists $i \in \{1, ..., n\}$ such that $q_i = \epsilon$
- 2) Let $St(\mathcal{E})$ be the set of all subterms of a term in \mathcal{E} . Then the following DFTA works : $Q = \{q_t \mid t \in St(\mathcal{E})\} \cup \{q_\perp, q_\top\}, F = \{q_\top\} \text{ and } \Delta =$
 - $\begin{array}{l} \star \ f(q_{t_1},...,q_{t_n}) \longrightarrow q_{f(t_1,...,t_n)} \ \text{if} \ f(t_1,...,t_n) \in St(\mathcal{E}) \setminus \mathcal{E} \\ \star \ f(q_{t_1},...,q_{t_n}) \longrightarrow q_{\top} \ \text{if} \ f(t_1,...,t_n) \in \mathcal{E} \end{array}$

 - $\star f(q_{t_1}, ..., q_{t_n}) \longrightarrow q_\perp$ else
 - $\star f(q_1,...,q_n) \longrightarrow q_{\top}$ if there is at least one $q_i = q_{\top}$
 - $\star f(q_1, ..., q_n) \longrightarrow q_{\perp}$ else

Exercise 2: Back from TD1 : Commutative closure

- Let $\mathcal{F} = \{f(2), a(0), b(0)\}.$
- 1) Let L_1 be the smallest set such that :
 - $f(a,b) \in L_1$
 - $t \in L_1 \Rightarrow f(a, f(t, b)) \in L_1$
 - Prove that L_1 is recognizable.
- 2) Prove that $L_2 = \{t \in T(\mathcal{F}) \mid |t|_a = |t|_b\}$ is not recognizable.
- 3) Let L be recognizable on \mathcal{F} and C(L) be the closure of L by the congruence generated by the equation f(x, y) = f(y, x). Prove that C(L) is recognizable.
- 4) Let L be recognizable on \mathcal{F} and AC(L) be the closure of L by the congruence generated by the equations f(x,y) = f(y,x) and f(x, f(y,z)) = f(f(x,y),z). Prove that AC(L) is not recognizable in general.

Solution:

1) $Q = \{q_a, q_b, q_f, q_{\top}\}, F = \{q_{\top}\} \text{ and } \Delta =$ $\star a \longrightarrow q_a$ $\star b \longrightarrow q_b$ $\star f(q_a, q_b) \longrightarrow q_{\top}$ $\star f(q_{\top}, q_b) \longrightarrow q_f$

 $\star f(q_a, q_f) \longrightarrow q_{\top}$

- 2) By the pumping lemma.
- 3) Given a NFTA for L, construct a NFTA for C(L) by adding for every rule of the form $f(q,q') \longrightarrow q''$, the rule $f(q',q) \longrightarrow q''$.
- 4) $AC(L_1) = L_2$.

Exercise 3: Decisions problems

We consider the (GII) problem (ground instance intersection) :

Instance : t a term in $T(\mathcal{F}, \mathcal{X})$ and \mathcal{A} a NFTA

Question : Is there at least one ground instance of t accepted by \mathcal{A} ?

- 1) Suppose that t is linear. Prove that (GII) is P-complete.
- 2) Suppose that \mathcal{A} is deterministic. Prove that (GII) is NP-complete.
- 3) Prove that (GII) is EXPTIME-complete.
 - hint : for the hardness, reduce the intersection non-emptiness problem (admitted to be EXPTIME-complete).
- 4) Deduce that the complement problem : **Instance** : t a term in $T(\mathcal{F}, \mathcal{X})$ and linear terms $t_1, ..., t_n$ **Question** : Is there a ground instance of t which is not an instance of any t_i ? is decidable.

Solution:

1) in P : use a construction similar to exercise 1, intersect with \mathcal{A} and test the nonemptiness.

P-hard : testing the emptiness of \mathcal{A} is equivalent to testing (GII) on \mathcal{A} and a variable.

2) in NP : guess for each variable an accessible state of \mathcal{A} and verify that you can complete this to an accepting run by running the automata.

NP-hard : We reduce (SAT) : let $\mathcal{F} = \{\neg(1), \lor(2), \land(2), \bot(0), \top(0)\}$ and \mathcal{A}_{SAT} the DFTA with $Q = \{q_{\top}, q_{\perp}\}, F = \{q_{\top}\}$ and $\Delta =$

$$\begin{array}{l} \star \ \perp \longrightarrow q_{\perp} \\ \star \ \top \longrightarrow q_{\top} \\ \star \ \neg(q_{\alpha}) \longrightarrow q_{\neg\alpha} \\ \star \ \lor(q_{\alpha}, q_{\beta}) \longrightarrow q_{\alpha \lor} \\ \star \ \land(q_{\alpha}, q_{\beta}) \longrightarrow q_{\alpha \land} \end{array}$$

The language of \mathcal{A}_{SAT} is the set of closed valid formulae.

Let ϕ a CNF formula, $\phi = \bigwedge_{i=1}^{n} c_i$ where c_i are clauses. Define t_{c_i} by induction on the size of c_i :

- if $c_i = x_j$, $t_{c_i} = x_j$
- if $c_i = \neg x_j, t_{c_i} = \neg(x_j)$

 $\begin{array}{l} - \quad \text{if } c_i = x_j \lor c'_i, t_{c_i} = \lor (x_j, t_{c'_i}) \\ - \quad \text{if } c_i = \neg x_j \lor c'_i, t_{c_i} = \lor (\neg (x_j), t_{c'_i}) \end{array}$

Then $t_{\phi} = \wedge (t_{c_1}, \wedge (t_{c_2}, \dots, \wedge (t_{c_{n-1}}, t_{c_n}) \dots))$. ϕ is satisfiable iff a closed instance of t_{ϕ} is recognized by \mathcal{A}_{SAT} .

- 3) in EXP : for each coloring of t by states (exponentially many) :
 - check that the coloring of every occurrence of a variable is an accessible state (in P)
 - check that the coloring corresponds to an accepting run (in P)
 - for every variable, let $\{q_1, ..., q_n\}$ be the set of the colorings of all occurrence of x. Check that $L(\mathcal{A}_{q_1}) \cap \ldots \cap L(\mathcal{A}_{q_n})$ is non empty where \mathcal{A}_q is the NFTA obtained from \mathcal{A} by changing the set of final states to $\{q\}$ (in P)

EXP-hard : We reduce intersection non-emptiness : let $(A_k = (Q_k, \mathcal{F}, I_k, \Delta_k))_{k \in \{1, \dots, n\}}$ a finite sequence of top-down NFTA (we can transform a bottom-up NFTA to a topdown one in polynomial time). We suppose that all the Q_k are disjoint. Define :

 $-\mathcal{F}' = \mathcal{F} \cup \{h(n)\}$

$$- t = h(x, ..., x) - \tilde{\mathcal{A}} = (\bigsqcup Q_k \sqcup \{q_0\}, \mathcal{F}', \{q_0\}, \Delta' \sqcup \bigsqcup \Delta_k) \text{ where} \Delta' = \{q_0(h(x_1, ..., x_n)) \longrightarrow h(q_1(x_1), ..., q_n(x_n)) \mid \text{ for } q_k \in I_k\}$$

Then $L(\mathcal{A}_1) \cap ... \cap L(\mathcal{A}_n) \neq \emptyset$ iff t has a closed instance in $L(\tilde{\mathcal{A}})$.

4) Use question 3 and exercise 4 of TD1.

Exercise 4: Stability vs Recognizability

We can see the set of runs of an NFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \Delta)$ as a tree language on $\mathcal{F} \times Q = \{(f,q)(n) \mid f(n) \in \mathcal{F}, q \in Q\}$ as the smallest set $Run(\mathcal{A})$ included in $T(\mathcal{F} \times Q)$ such that : • if $a \to q \in \Delta$, then $(a,q) \in Run(\mathcal{A})$

• if $f(q_1, ..., q_n) \to q \in \Delta$ and $t_1, ..., t_n \in Run(\mathcal{A})$ with $t_i(\epsilon) = (\underline{\ }, q_i)$ then $(f, q)(t_1, ..., t_n) \in Run(\mathcal{A})$.

Then the set of accepting runs can be seen as $Acc(\mathcal{A}) = \{t \in Run(\mathcal{A}) \mid t(\epsilon) = (_,q), q \in Q_f\}.$

- 1) Prove that $Acc(\mathcal{A})$ is in the smallest class **Stab** of sets which contains all the $T(\mathcal{F})$ for any finite ranked set \mathcal{F} and which is stable by image of linear morphisms and inverse image of morphisms. For example, you should be able to prove that $Acc(\mathcal{A}) = \beta^{-1}(\gamma(\delta^{-1}(T(\mathcal{F}'))))$ where γ is linear.
- 2) Deduce that $\mathbf{Stab} = \mathbf{Rec}$.

Solution:

2) Stab \subseteq Rec : Rec is stable under inverse image, linear image and contains all the $T(\mathcal{F})$.

Rec \subseteq **Stab** : Let $L \in$ **Rec** and \mathcal{A} a NFTA recognizing L. Define $\alpha : T(\mathcal{F} \times Q) \longrightarrow T(\mathcal{F})$ linear such that :

 $\star \star \star \star (f,q)(x_1,...,x_n) \mapsto f(x_1,...,x_n)$ Then $L = \alpha(Acc(\mathcal{A}))$ and by 1), $L \in \mathbf{Stab}$.