Automates d'arbre

TD $n^{\circ}2$: Decision problems & tree homomorphisms

September 19, 2017

Exercise 1: Back from TD1 : an abstract language.

- 1) Let \mathcal{E} be a finite set of linear terms on $T(\mathcal{F}, \mathcal{X})$. Prove that $Red(\mathcal{E}) = \{C[t\sigma] \mid C \in \mathcal{C}(\mathcal{F}), t \in \mathcal{E}, \sigma \text{ ground substitution}\}$ is recognizable.
- 2) Prove that if \mathcal{E} contains only ground terms, then one can construct a DFTA recognizing $Red(\mathcal{E})$ whose number of states is at most n+2, where n is the number of nodes of \mathcal{E} .

Exercise 2: Back from TD1 : Commutative closure

- Let $\mathcal{F} = \{f(2), a(0), b(0)\}.$
- 1) Let L_1 be the smallest set such that :
 - $f(a,b) \in L_1$
 - $t \in L_1 \Rightarrow f(a, f(t, b)) \in L_1$
 - Prove that L_1 is recognizable.
- 2) Prove that $L_2 = \{t \in T(\mathcal{F}) \mid |t|_a = |t|_b\}$ is not recognizable.
- 3) Let L be recognizable on \mathcal{F} and C(L) be the closure of L by the congruence generated by the equation f(x, y) = f(y, x). Prove that C(L) is recognizable.
- 4) Let L be recognizable on \mathcal{F} and AC(L) be the closure of L by the congruence generated by the equations f(x, y) = f(y, x) and f(x, f(y, z)) = f(f(x, y), z). Prove that AC(L) is not recognizable in general.

Exercise 3: Decisions problems

We consider the (GII) problem (ground instance intersection) :

Instance : t a term in $T(\mathcal{F}, \mathcal{X})$ and \mathcal{A} a NFTA

Question : Is there at least one ground instance of t accepted by \mathcal{A} ?

- 1) Suppose that t is linear. Prove that **(GII)** is P-complete.
- 2) Suppose that \mathcal{A} is deterministic. Prove that (GII) is NP-complete.
- 3) Prove that (GII) is EXPTIME-complete.

hint : for the hardness, reduce the intersection non-emptiness problem (admitted to be EXPTIME-complete).

4) Deduce that the complement problem :

Instance : t a term in $T(\mathcal{F}, \mathcal{X})$ and linear terms $t_1, ..., t_n$ **Question** : Is there a ground instance of t which is not an instance of any t_i ? is decidable.

Exercise 4: Stability vs Recognizability

We can see the set of runs of an NFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \Delta)$ as a tree language on $\mathcal{F} \times Q = \{(f, q)(n) \mid f(n) \in \mathcal{F}, q \in Q\}$ as the smallest set $Run(\mathcal{A})$ included in $T(\mathcal{F} \times Q)$ such that :

- if $a \to q \in \Delta$, then $(a,q) \in Run(\mathcal{A})$
- if $f(q_1, ..., q_n) \to q \in \Delta$ and $t_1, ..., t_n \in Run(\mathcal{A})$ with $t_i(\epsilon) = (\underline{\ }, q_i)$ then $(f, q)(t_1, ..., t_n) \in Run(\mathcal{A})$.

Then the set of accepting runs can be seen as $Acc(\mathcal{A}) = \{t \in Run(\mathcal{A}) \mid t(\epsilon) = (_,q), q \in Q_f\}.$

1) Prove that $Acc(\mathcal{A})$ is in the smallest class **Stab** of sets which contains all the $T(\mathcal{F})$ for any finite ranked set \mathcal{F} and which is stable by image of linear morphisms and inverse image of

morphisms. For example, you should be able to prove that $Acc(\mathcal{A}) = \beta^{-1}(\gamma(\delta^{-1}(T(\mathcal{F}'))))$ where γ is linear.

2) Deduce that $\mathbf{Stab} = \mathbf{Rec}$.